Abstract

Metal tube is a traditional energy-absorbing structure, and metal foam is a lightweight material with advantages, i.e., high energy absorption and high specific strength. The foam-filled square tube can improve crashworthiness and has better energy absorption, which is higher than the sum of the energy absorption of the tube and foam. Axial crushing behaviors of metal density gradient foam (DGF) filled square taper tubes are studied analytically and numerically in this paper. An analytical model is presented to study the crushing behavior of DGF-filled square taper metal tube under axial loading, in which the interaction between square taper tube and DGF is considered. The numerical calculation is conducted, and the deformation mode is obtained. The analytical predictions are well consistent with the experimental and numerical results. The influences of taper angle, foam strength, maximum relative density, and minimum relative density of gradient foam on the compressive behavior of metal DGF-filled square taper tubes under axial loading are considered. It is demonstrated that when the taper angle is less than 85 deg, the average crushing force increases as the minimum density of the DGF increases. However, when the taper angle is greater than 85 deg, the average crushing force decreases with the increase of the minimum density of the gradient. This proposed analytical model can effectively predict the axial crushing behaviors of metal DGF-filled square taper tubes.

References

1.
Deng
,
S. N.
,
Wu
,
D.
,
Yang
,
J. S.
,
Luo
,
H.
,
Fu
,
L. L.
,
Schmidt
,
R.
, and
Schröder
,
K. U.
,
2022
, “
Damage Recognition of Glass Fiber Composite Bi-Directional Corrugated Sandwich Cylindrical Panels via Non-Contacted Vibration Method
,”
Mater. Today Commun.
,
32
, p.
103864
.
2.
Wang
,
S. L.
,
Zhang
,
M.
,
Pei
,
W. J.
,
Yu
,
F.
, and
Jiang
,
Y. H.
,
2022
, “
Energy-Absorbing Mechanism and Crashworthiness Performance of Thin-Walled Tubes Diagonally Filled With Rib-Reinforced Foam Blocks Under Axial Crushing
,”
Compos. Struct.
,
299
, p.
116149
.
3.
Wang
,
A. S.
,
Yu
,
X. H.
,
Wang
,
H.
,
Li
,
Y.
,
Zhang
,
J.
, and
Fan
,
X. L.
,
2022
, “
Dynamic Response of Sandwich Tubes With Continuously Density-Graded Aluminum Foam Cores Under Internal Explosion Load
,”
Materials
,
15
(
19
), p.
6966
.
4.
Wang
,
Y. Z.
, and
Ma
,
L.
,
2022
, “
Sound Insulation Performance of Pyramidal Truss Core Cylindrical Sandwich Structure
,”
Acta Mech. Solida. Sin.
,
35
(
504–517
), pp.
1
14
.
5.
Fu
,
X. R.
,
Zhang
,
X.
, and
Yu
,
Q. C.
,
2022
, “
Bending Collapse of Optimal Arched Thin-Walled Structures
,”
Thin Wall. Struct.
,
180
, p.
109828
.
6.
Wang
,
W.
, and
Qiu
,
X. M.
,
2018
, “
Analysis of the Carrying Capacity for Tubes Under Oblique Loading
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031010
.
7.
Zhou
,
C. H.
,
Jiang
,
L. L.
,
Tian
,
K.
,
Bi
,
X. J.
, and
Wang
,
B.
,
2017
, “
Origami Crash Boxes Subjected to Dynamic Oblique Loading
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091006
.
8.
Zhang
,
J. X.
,
Guo
,
H. Y.
,
Du
,
J. L.
,
Yuan
,
H.
,
Zhu
,
Y. Q.
, and
Qin
,
Q. H.
,
2021
, “
Splitting and Curling Collapse of Metal Foam Core Square Sandwich Metal Tubes: Experimental and Theoretical Investigations
,”
Thin Wall. Struct.
,
169
, p.
108346
.
9.
Yang
,
M.
,
Han
,
B.
,
Mao
,
Y. J.
,
Zhang
,
J.
, and
Lu
,
T. J.
,
2022
, “
Crashworthiness of Foam Filled Truncated Conical Sandwich Shells With Corrugated Cores
,”
Thin Wall. Struct.
,
179
, p.
109677
.
10.
Padmaja
,
M.
,
Murty
,
V. V. V. S.
, and
Rao
,
R. N. V.
,
2019
, “
Comparative Structural Performance of Composite Filled Tubes
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
20
(
6
), pp.
477
486
.
11.
Zhang
,
Z. Y.
,
Sun
,
W.
,
Zhao
,
Y. S.
, and
Hou
,
S. J.
,
2018
, “
Crashworthiness of Different Composite Tubes by Experiments and Simulations
,”
Composites, Part B
,
143
, pp.
86
95
.
12.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Viegelahn
,
G. L.
, and
Johnson
,
W.
,
1988
, “
The Modelling of the Progressive Extensible Plastic Collapse of Thin-Wall Shells
,”
Int. J. Mech. Sci.
,
30
(
3–4
), pp.
249
261
.
13.
Meguid
,
S. A.
,
Yang
,
F.
, and
Verberne
,
P.
,
2015
, “
Progressive Collapse of Foam-Filled Conical Frustum Using Kinematically Admissible Mechanism
,”
Int. J. Impact Eng.
,
82
, pp.
25
35
.
14.
Mohammadiha
,
O.
, and
Beheshti
,
H.
,
2014
, “
Optimization of Functionally Graded Foam-Filled Conical Tubes Under Axial Impact Loading
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1741
1752
.
15.
Reid
,
S. R.
, and
Reddy
,
T. Y.
,
1986
, “
Axial Crushing of Foam-Filled Tapered Sheet Metal Tubes
,”
Int. J. Mech. Sci.
,
28
(
10
), pp.
643
656
.
16.
Ying
,
L. W.
,
Yang
,
F. P.
, and
Wang
,
X.
,
2016
, “
Analytical Method for the Axial Crushing Force of Fiber-Reinforced Tapered Square Metal Tubes
,”
Compos. Struct.
,
153
, pp.
222
233
.
17.
Wang
,
X.
,
Ying
,
L. W.
,
Li
,
Y. D.
, and
Chen
,
J. B.
,
2020
, “
Influences of Foam Filler on Axially Crushing Characteristics of Fiber-Reinforced Tapered Structures
,”
J. Strain Anal. Eng. Des.
,
55
(
3–4
), pp.
118
131
.
18.
Wu
,
H.
,
Lai
,
C. L.
, and
Fan
,
H. L.
,
2016
, “
Frusta Structure Designing to Improve Quasi-Static Axial Crushing Performances of Triangular Tubes
,”
Int. J. Steel Struct.
,
16
(
1
), pp.
257
266
.
19.
Chen
,
X.
,
Wang
,
W. H.
,
Jin
,
F. N.
, and
Fan
,
H. L.
,
2022
, “
Braided-Textile Reinforced Thin-Walled Conical Tubular Structures: Designing, Manufacturing and Testing
,”
Thin Wall. Struct.
,
174
, p.
109121
.
20.
Lykakos
,
S.
,
Kostazos
,
P. K.
, and
Manolakos
,
D. E.
,
2020
, “
Quasi-Static Axial Crushing of Thin-Walled Steel Tapered Tubes With Hybrid Geometry: Experimental and Numerical Investigation
,”
Int. J. Crashworthiness
,
27
(
1
), pp.
1
15
.
21.
Gan
,
N. F.
,
Feng
,
Y. N.
,
Yin
,
H. F.
,
Wen
,
G. L.
,
Wang
,
D. H.
, and
Huang
,
X. Y.
,
2016
, “
Quasi-Static Axial Crushing Experiment Study of Foam-Filled CFRP and Aluminum Alloy Thin-Walled Structures
,”
Compos. Struct.
,
157
, pp.
303
319
.
22.
Wang
,
L.
,
Zhang
,
B. Y.
,
Zhang
,
J.
,
Jiang
,
Y. X.
,
Wang
,
W.
, and
Wu
,
G. H.
,
2021
, “
Deformation and Energy Absorption Properties of Cenosphere-Aluminum Syntactic Foam-Filled Tubes Under Axial Compression
,”
Thin Wall. Struct.
,
160
, p.
107364
.
23.
Zhu
,
G. H.
,
Zhao
,
Z. H.
,
Hu
,
P.
,
Luo
,
G.
,
Zhao
,
X.
, and
Yu
,
Q.
,
2021
, “
On Energy-Absorbing Mechanisms and Structural Crashworthiness of Laterally Crushed Thin-Walled Structures Filled With Aluminum Foam and CFRP Skeleton
,”
Thin Wall. Struct.
,
160
, p.
107390
.
24.
Yao
,
R. Y.
,
Zhao
,
Z. Y.
,
Hao
,
W. Q.
,
Yin
,
G. S.
, and
Zhang
,
B.
,
2019
, “
Experimental and Theoretical Investigations on Axial Crushing of Aluminum Foam-Filled Grooved Tube
,”
Compos. Struct.
,
226
, p.
111229
.
25.
Oloumi
,
D. M.
,
Hamed
,
A.
, and
Hossein
,
L. G.
,
2022
, “
Crushing Performance of Auxetic Tubes Under Quasi-Static and Impact Loading
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
6
), p.
230
.
26.
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
1999
, “
Static Crushing of Square Aluminium Extrusions With Aluminium Foam Filler
,”
Int. J. Mech. Sci.
,
41
(
8
), pp.
967
993
.
27.
Padmaja
,
M.
,
Murty
,
V. V. V. S.
, and
Ramana
,
R. N. V.
,
2021
, “
Quasi Static Axial Compression of Empty and PU Foam Filled Circular Aluminium and Light Gauge Square Steel Tubes
,”
Mater. Today: Proc.
,
43
(
P2
), pp.
2342
2347
.
28.
Mahbod
,
M.
, and
Asgari
,
M.
,
2018
, “
Energy Absorption Analysis of a Novel Foam-Filled Corrugated Composite Tube Under Axial and Oblique Loadings
,”
Thin Wall. Struct.
,
129
, pp.
58
73
.
29.
Mat
,
F.
,
Ismail
,
K. A.
,
Ahmad
,
M.
,
Sazali
,
Y.
, and
Othman
,
I.
,
2014
, “
Dynamic Axial Crushing of Empty and Foam-Filled Conical Aluminium Tubes: Experimental and Numerical Analysis
,”
Appl. Mech. Mater.
,
3237
(
566
), pp.
305
309
.
30.
Lin
,
J. S.
,
Wang
,
X.
, and
Lu
,
G.
,
2014
, “
Crushing Characteristics of Fiber Reinforced Conical Tubes With Foam-Filler
,”
Compos. Struct.
,
116
, pp.
18
28
.
31.
Li
,
S. F.
, and
Li
,
Q. M.
,
2021
, “
Response of Functionally Graded Polymeric Foam Under Axial Compression
,”
Int. J. Mech. Sci.
,
210
, p.
106750
.
32.
Zhang
,
H.
,
Chang
,
B. X.
,
Peng
,
K. F.
,
Yu
,
J. L.
, and
Zheng
,
Z. J.
,
2023
, “
Anti-Blast Analysis and Design of a Sacrificial Cladding With Graded Foam-Filled Tubes
,”
Thin Wall. Struct.
,
182
, p.
110313
.
33.
Ebrahimi
,
S.
,
Vahdatazad
,
N.
, and
Liaghat
,
G.
,
2018
, “
Experimental Characterization of the Energy Absorption of Functionally Graded Foam-Filled Tubes Under Axial Crushing Loads
,”
J. Theor. Appl. Mech.
,
48
(
1
), pp.
76
89
.
34.
Amir
,
N.
,
Payman
,
G.
, and
Parisa
,
A.
,
2020
, “
Numerical Crashworthiness Analysis of a Novel Functionally Graded Foam-Filled Tube
,”
J. Sandwich Struct. Mater.
,
23
(
5
), pp.
1635
1661
.
35.
Yin
,
H. F.
,
Wen
,
G. L.
,
Hou
,
S. J.
, and
Qing
,
Q. X.
,
2012
, “
Multiobjective Crashworthiness Optimization of Functionally Lateral Graded Foam-Filled Tubes
,”
Mater. Des.
,
44
, pp.
414
428
.
36.
Yu
,
X. H.
,
Qin
,
Q. H.
,
Zhang
,
J. X.
,
He
,
S. Y.
,
Xiang
,
C. P.
,
Wang
,
M. S.
, and
Wang
,
T. J.
,
2018
, “
Crushing and Energy Absorption of Density-Graded Foam-Filled Square Columns: Experimental and Theoretical Investigations
,”
Compos. Struct.
,
201
, pp.
423
433
.
37.
Yu
,
X. H.
,
Qin
,
Q. H.
,
Zhang
,
J. X.
,
Wang
,
M. S.
,
Xiang
,
C. P.
, and
Wang
,
T. J.
,
2022
, “
Low-Velocity Impact of Density-Graded Foam-Filled Square Columns
,”
Int. J. Crashworthiness
,
27
(
2
), pp.
376
389
.
38.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
39.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
.
You do not currently have access to this content.