Abstract

Due to the forming or curing process, the materials of three-dimensional (3D) printing have periodic meso-defects, which result in complex constitutive relations and anisotropy. Fused deposition modeling (FDM), which is a typical 3D printing process, inevitably introduces stacking pore defects due to the three-dimensional stacking of materials along the printing direction. At present, research focuses on the mechanical properties of materials printed along only one single direction. To consider the possibility of changing the mechanical properties of materials by adjusting the printing direction, the change in the properties of printing materials along the multiple printing direction combinations was analyzed in this paper. First, based on a continuous medium model, the constitutive model proposed by Garzon-Hernandez et al. was considered, and then to improve the prediction accuracy of the model in the plastic stage, a model describing the porosity change rate of porous materials was introduced to obtain better prediction results. Then, the finite element method (FEM) was developed using the new constitutive relation model implemented by the user defined material subroutine (USERMAT) into ansys software. Second, through the finite element subroutine, the mechanical response of the FDM 3D printing plate with two different printing direction combinations was simulated. The results show that by adjusting the print direction combination of the double-layer FDM 3D printing materials, the materials show a different anisotropy, maximum bearing capacity of tension and shear and buckling resistance.

References

1.
Lee
,
J.-Y.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
Fundamentals and Applications of 3D Printing for Novel Materials
,”
Appl. Mater. Today
,
7
, pp.
120
133
.
2.
Suiker
,
A. S. J.
,
2018
, “
Mechanical Performance of Wall Structures in 3D Printing Processes: Theory, Design Tools and Experiments
,”
Int. J. Mech. Sci.
,
137
, pp.
145
170
.
3.
Tetsuka
,
H.
, and
Shin
,
S. R.
,
2020
, “
Materials and Technical Innovations in 3D Printing in Biomedical Applications
,”
J. Mater. Chem. B
,
8
(
15
), pp.
2930
2950
.
4.
Blanco
,
I.
,
2020
, “
The Use of Composite Materials in 3D Printing
,”
J. Compos. Sci.
,
4
(
2
), p.
42
.
5.
Mohan
,
M. K.
,
Rahul
,
A. V.
,
De Schutter
,
G.
, and
Van Tittelboom
,
K.
,
2021
, “
Extrusion-Based Concrete 3D Printing From a Material Perspective: A State-of-the-Art Review
,”
Cem. Concrete Compos.
,
115
, p.
103855
.
6.
Srinivasan
,
D.
,
Meignanamoorthy
,
M.
,
Ravichandran
,
M.
,
Mohanavel
,
V.
,
Alagarsamy
,
S. V.
,
Chanakyan
,
S.
,
Ram Prabhu
,
T.
, and
Rajkumar
,
S.
,
2021
, “
3D Printing Manufacturing Techniques, Materials, and Applications: An Overview
,”
Adv. Mater. Sci. Eng.
,
2021
(
Special Issue
), p.
5756563
.
7.
Khan
,
M. A.
, and
Kumar
,
S.
,
2018
, “
Performance Enhancement of Tubular Multilayers Via Compliance-Tailoring: 3D Printing, Testing and Modeling
,”
Int. J. Mech. Sci.
,
140
, pp.
93
108
.
8.
Yuk
,
H.
,
Lu
,
B.
,
Lin
,
S.
,
Qu
,
K.
,
Xu
,
J.
,
Luo
,
J.
, and
Zhao
,
X.
,
2020
, “
3D Printing of Conducting Polymers
,”
Nat. Commun.
,
11
(
1
), pp.
1
8
.
9.
Patel
,
D. K.
,
Sakhaei
,
A. H.
,
Layani
,
M.
,
Zhang
,
B.
,
Ge
,
Q.
, and
Magdassi
,
S.
,
2017
, “
Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing
,”
Adv. Mater.
,
29
(
15
), p.
1606000
.
10.
Deng
,
S.
,
Wu
,
J.
,
Dickey
,
M. D.
,
Zhao
,
Q.
, and
Xie
,
T.
,
2019
, “
Rapid Open-Air Digital Light 3D Printing of Thermoplastic Polymer
,”
Adv. Mater.
,
31
(
39
), p.
1903970
.
11.
Srinivas
,
V.
,
van Hooy-Corstjens
,
C. S. J.
, and
Harings
,
J. A. W.
,
2018
, “
Correlating Molecular and Crystallization Dynamics to Macroscopic Fusion and Thermodynamic Stability in Fused Deposition Modeling; a Model Study on Polylactides
,”
Polymer
,
142
, pp.
348
355
.
12.
Mahmood
,
M. A.
,
Popescu
,
A. C.
, and
Mihailescu
,
I. N.
,
2020
, “
Metal Matrix Composites Synthesized by Laser-Melting Deposition: A Review
,”
Materials
,
13
(
11
), p.
2593
.
13.
Daminabo
,
S. C.
,
Goel
,
S.
,
Grammatikos
,
S. A.
,
Nezhad
,
H. Y.
, and
Thakur
,
V. K.
,
2020
, “
Fused Deposition Modeling-Based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems
,”
Mater. Today Chem.
,
16
, p.
100248
.
14.
Huang
,
J.
,
Chen
,
Q.
,
Jiang
,
H.
,
Zou
,
B.
,
Li
,
L.
,
Liu
,
J.
, and
Yu
,
H.
,
2020
, “
A Survey of Design Methods for Material Extrusion Polymer 3D Printing
,”
Virtual Phys. Prototyp.
,
15
(
2
), pp.
148
162
.
15.
Günaydın
,
K.
, and
Süleyman Türkmen
,
H.
,
2018
, “
Common FDM 3D Printing Defects
,”
International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry
,
Antalya, Turkey
,
Apr. 19–21
.
16.
Chadha
,
A.
,
Irfan Ul Haq
,
M.
,
Raina
,
A.
,
Singh
,
R. R.
,
Penumarti
,
N. B.
, and
Bishnoi
,
M. S.
,
2019
, “
Effect of Fused Deposition Modelling Process Parameters on Mechanical Properties of 3D Printed Parts
,”
World J. Eng.
,
16
(
4
), pp.
550
559
.
17.
Ferretti
,
P.
,
Leon-Cardenas
,
C.
,
Santi
,
G. M.
,
Sali
,
M.
,
Ciotti
,
E.
,
Frizziero
,
L.
,
Donnici
,
G.
, and
Liverani
,
A.
,
2021
, “
Relationship Between FDM 3D Printing Parameters Study: Parameter Optimization for Lower Defects
,”
Polymers
,
13
(
13
), p.
2190
.
18.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
19.
Hmeidat
,
N. S.
,
Pack
,
R. C.
,
Talley
,
S. J.
,
Moore
,
R. B.
, and
Compton
,
B. G.
,
2020
, “
Mechanical Anisotropy in Polymer Composites Produced by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101385
.
20.
Chen
,
Y.
,
Jia
,
L.
,
Liu
,
C.
,
Zhang
,
Z.
,
Ma
,
L.
,
Chen
,
C.
,
Banthia
,
N.
, and
Zhang
,
Y.
,
2022
, “
Mechanical Anisotropy Evolution of 3D-Printed Alkali-Activated Materials With Different GGBFS/FA Combinations
,”
J. Build. Eng.
,
50
, p.
104126
.
21.
Hanon
,
M. M.
,
Marczis
,
R.
, and
Zsidai
,
L.
,
2019
, “
Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3D Printed PETG Tensile Test Specimens
,”
Key Eng. Mater.
,
821
(
1
), pp.
167
173
. www.scientific.net/KEM.821.167
22.
Xiao
,
J.
,
Liu
,
H.
, and
Ding
,
T.
,
2021
, “
Finite Element Analysis on the Anisotropic Behavior of 3D Printed Concrete Under Compression and Flexure
,”
Addit. Manuf.
,
39
, p.
101712
.
23.
Torre
,
R.
, and
Brischetto
,
S.
,
2022
, “
Experimental Characterization and Finite Element Validation of Orthotropic 3D-Printed Polymeric Parts
,”
Int. J. Mech. Sci.
,
219
, p.
107095
.
24.
Somireddy
,
M.
,
Czekanski
,
A.
, and
Veer Singh
,
C.
,
2018
, “
Development of Constitutive Material Model of 3D Printed Structure Via FDM
,”
Mater. Today Commun.
,
15
, pp.
143
152
.
25.
Somireddy
,
M.
, and
Czekanski
,
A.
,
2021
, “
Computational Modeling of Constitutive Behaviour of 3D Printed Composite Structures
,”
J. Mater. Res. Technol.
,
11
, pp.
1710
1718
.
26.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Process.
,
6
(
2
), pp.
170
178
.
27.
Guo
,
Z.
,
Caner
,
F.
,
Peng
,
X.
, and
Moran
,
B.
,
2008
, “
On Constitutive Modelling of Porous Neo-Hookean Composites
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2338
2357
.
28.
Garzon-Hernandez
,
S.
,
Arias
,
A.
, and
Garcia-Gonzalez
,
D.
,
2020
, “
A Continuum Constitutive Model for FDM 3D Printed Thermoplastics
,”
Compos. Part B: Eng.
,
201
, p.
108373
.
29.
Majko
,
J.
,
Saga
,
M.
,
Vasko
,
M.
,
Handrik
,
M.
,
Barnik
,
F.
, and
Dorčiak
,
F.
,
2019
, “
FEM Analysis of Long-Fibre Composite Structures Created by 3D Printing
,”
Transp. Res. Procedia
,
40
, pp.
792
799
.
30.
Soufivand
,
A. A.
,
Abolfathi
,
N.
,
Hashemi
,
A.
, and
Lee
,
S. J.
,
2020
, “
The Effect of 3D Printing on the Morphological and Mechanical Properties of Polycaprolactone Filament and Scaffold
,”
Polym. Adv. Technol.
,
31
(
5
), pp.
1038
1046
.
31.
Soufivand
,
A. A.
,
Abolfathi
,
N.
,
Hashemi
,
S. A.
, and
Lee
,
S. J.
,
2020
, “
Prediction of Mechanical Behavior of 3D Bioprinted Tissue-Engineered Scaffolds Using Finite Element Method (FEM) Analysis
,”
Addit. Manuf.
,
33
, p.
101181
.
32.
de Obaldia
,
E. E.
,
Jeong
,
C.
,
Grunenfelder
,
L. K.
,
Kisailus
,
D.
, and
Zavattieri
,
P.
,
2015
, “
Analysis of the Mechanical Response of Biomimetic Materials With Highly Oriented Microstructures Through 3D Printing, Mechanical Testing and Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
48
, pp.
70
85
.
33.
Tvergaard
,
V.
, and
Needleman
,
A
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
34.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol
,
99
(
1
), pp.
2
15
.
35.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
36.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
J. Eng. Mater. Technol
,
102
(
3
), pp.
249
256
.
37.
Tvergaard
,
V.
,
1982
, “
Ductile Fracture by Cavity Nucleation Between Larger Voids
,”
J. Mech. Phys. Solids
,
30
(
4
), pp.
265
286
.
38.
Polanco-Loria
,
M.
,
Clausen
,
A. H.
,
Berstad
,
T.
, and
Hopperstad
,
O. S.
,
2010
, “
Constitutive Model for Thermoplastics With Structural Applications
,”
Int. J. Impact Eng.
,
37
(
12
), pp.
1207
1219
.
39.
Xu
,
K.
,
Chen
,
W.
,
Liu
,
L.
,
Zhao
,
Z.
, and
Luo
,
G.
,
2021
, “
Numerical Implementation, Comparison and Validation of a Pressure Dependent Model for Polymer Composites
,”
Int. J. Mech. Sci.
,
212
, p.
106818
.
40.
Rong
,
Y.
,
Lei
,
T.
,
Xu
,
J.
,
Huang
,
Y.
, and
Wang
,
C.
,
2018
, “
Residual Stress Modelling in Laser Welding Marine Steel EH36 Considering a Thermodynamics-Based Solid Phase Transformation
,”
Int. J. Mech. Sci.
,
146
, pp.
180
190
.
41.
Yoon
,
S.-Y.
,
Barlat
,
F.
,
Lee
,
S.-Y.
,
Kim
,
J.-H.
,
Wi
,
M.-S.
, and
Kim
,
D.-J.
,
2022
, “
Finite Element Implementation of Hydrostatic Pressure-Sensitive Plasticity and Its Application to Distortional Hardening Model and Sheet Metal Forming Simulations
,”
J. Mater. Process. Technol.
,
302
, p.
117494
.
42.
Belnoue
,
J. P.-H.
,
Nixon-Pearson
,
O. J.
,
Ivanov
,
D.
, and
Hallett
,
S. R.
,
2016
, “
A Novel Hyper-Viscoelastic Model for Consolidation of Toughened Prepregs Under Processing Conditions
,”
Mech. Mater.
,
97
, pp.
118
134
.
43.
Segurado
,
J.
,
Lebensohn
,
R. A.
,
LLorca
,
J.
, and
Tomé
,
C. N.
,
2012
, “
Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-consistent Formulation in Implicit Finite Elements
,”
Int. J. Plast.
,
28
(
1
), pp.
124
140
.
44.
Hu
,
R.
,
Zhang
,
X.
,
Chen
,
Y.
, and
Zhang
,
C.
,
2021
, “
Characterization and Prediction of the Nonlinear Creep Behavior of 3D-Printed Polyurethane Acrylate
,”
Addit. Manuf.
,
50
, p.
102583
.
You do not currently have access to this content.