Abstract

The analysis and design of materials is often a slow process that may take weeks, months, or years, and many current material platforms rely on expensive raw material sources that fail to achieve sustainability goals. Meanwhile, bio-inspired Materials Informatics—fueled by emerging techniques such as multiscale modeling, machine learning, and autonomous experimentation—is transforming the way materials are understood, discovered, developed, and selected. The impact of these tools is particularly noteworthy since they can be used to develop materials with fewer resources and with greater societal impact. A field that would strongly benefit from the use of Materials Informatics tools is that of structural biological materials, where mechanical properties are crucial for biological and engineering properties for species survival such as fracture-resistant armor against predators, elastic recovery for repeated loadings, or mechanical actuation capacity. Generations of researchers have studied biological materials for their fascinating structure–property relationships that make up their impressive properties, including mechanical resilience. Despite the accumulation of scientific knowledge, relatively little has been translated to generating engineered bio-inspired materials. Addressing this gap, emerging Materials Informatics tools can now be used to make use of legacy data, newly collected empirical observations, and predictive models to make significant advances in this field.

References

1.
Kamat
,
S.
,
Su
,
X.
,
Ballarini
,
R.
, and
Heuer
,
A. H.
,
2000
, “
Structural Basis for the Fracture of the Shell of the Conch Strombus Gigas
,”
Nature
,
405
(
6790
), pp.
1036
1040
.
2.
Velasco-Hogan
,
A.
,
Deheyn
,
D. D.
,
Koch
,
M.
,
Nothdurft
,
B.
,
Arzt
,
E.
, and
Meyers
,
M. A.
,
2019
, “
On the Nature of the Transparent Teeth of the Deep-Sea Dragonfish, Aristostomias Scintillans
,”
Matter
,
1
(
1
), pp.
235
249
.
3.
Pollice
,
R.
,
dos Passos Gomes
,
G.
,
Aldeghi
,
M.
,
Hickman
,
R. J.
,
Krenn
,
M.
,
Lavigne
,
C.
,
Lindner-D’Addario
,
M.
, et al
,
2021
, “
Data-Driven Strategies for Accelerated Materials Design
,”
Acc. Chem. Res.
,
54
(
4
), pp.
849
860
.
4.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
.
5.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. B Eng.
,
143
, pp.
172
196
.
6.
Gu
,
G. X.
,
Takaffoli
,
M.
,
Hsieh
,
A. J.
, and
Buehler
,
M. J.
,
2016
, “
Biomimetic Additive Manufactured Polymer Composites for Improved Impact Resistance
,”
Extreme Mech. Lett.
,
9
(Part 2), pp.
317
323
.
7.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2014
, “
Modeling and Additive Manufacturing of Bio-Inspired Composites With Tunable Fracture Mechanical Properties
,”
Soft Matter
,
10
(
25
), pp.
4415
4570
.
8.
Chan
,
S. S. L.
,
Pennings
,
R. M.
,
Edwards
,
L.
, and
Franks
,
G. V.
,
2020
, “
3D Printing of Clay for Decorative Architectural Applications: Effect of Solids Volume Fraction on Rheology and Printability
,”
Addit. Manuf.
,
35
, p.
101335
.
9.
Oliveira
,
E. F.
,
Ambekar
,
R. S.
,
Galvao
,
D. S.
, and
Tiwary
,
C. S.
,
2022
, “
Schwarzites and Schwarzynes Based Load-Bear Resistant 3D Printed Hierarchical Structures
,”
Addit. Manuf.
,
60
(Part A), p.
103180
.
10.
Portela
,
C. M.
,
Edwards
,
B. W.
,
Veysset
,
D.
,
Sun
,
Y.
,
Nelson
,
K. A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2021
, “
Supersonic Impact Resilience of Nanoarchitected Carbon
,”
Nat. Mater.
,
20
(
11
), pp.
1491
1497
.
11.
Xia
,
X.
,
Afshar
,
A.
,
Yang
,
H.
,
Portela
,
C. M.
,
Kochmann
,
D. M.
,
Di Leo
,
C. V.
, and
Greer
,
J. R.
,
2019
, “
Electrochemically Reconfigurable Architected Materials
,”
Nature
,
573
(
7773
), pp.
205
213
.
12.
Ashby
,
M.
,
1995
, “
The Mechanical Properties of Natural Materials
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
450
(
1938
), pp.
123
140
.
13.
Vincent
,
J.
,
2012
,
Structural Biomaterials
, 3rd ed.,
Princeton University Press
,
Princeton, NJ
.
14.
Meyers
,
M. A.
,
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
15.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P.-Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.
16.
Buehler
,
M. J.
, and
Ballarini
,
R.
,
2013
,
Materiomics: Multiscale Mechanics of Biological Materials and Structures
,
Springer
,
Vienna
. https://link.springer.com/book/10.1007/978-3-7091-1574-9
17.
Gibson
,
L. J.
,
2012
, “
The Hierarchical Structure and Mechanics of Plant Materials
,”
J. R. Soc. Interface
,
9
(
76
), pp.
2749
2766
.
18.
Bar-On
,
B.
, and
Wagner
,
H. D.
,
2013
, “
Structural Motifs and Elastic Properties of Hierarchical Biological Tissues—A Review
,”
J. Struct. Biol.
,
183
(
2
), pp.
149
164
.
19.
Xu
,
Y.
,
2017
, “Hierarchical Materials,”
Modern Inorganic Synthetic Chemistry
, 2nd ed.,
R.
Xu
and
Y.
Xu
, eds.,
Elsevier
,
Amsterdam
, pp.
545
574
.
20.
Chen
,
Q.
, and
Pugno
,
N. M.
,
2013
, “
Bio-mimetic Mechanisms of Natural Hierarchical Materials: A Review
,”
J. Mech. Behav. Biomed. Mater.
,
19
, pp.
3
33
.
21.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature’s Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.
22.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
23.
Naleway
,
S. E.
,
Porter
,
M. M.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2015
, “
Structural Design Elements in Biological Materials: Application to Bioinspiration
,”
Adv. Mater.
,
27
(
37
), pp.
5455
5476
.
24.
Dixon
,
P. G.
, and
Gibson
,
L. J.
,
2014
, “
The Structure and Mechanics of Moso Bamboo Material
,”
J. R. Soc. Interface
,
11
(
99
), p.
20140321
.
25.
Gludovatz
,
B.
,
Walsh
,
F.
,
Zimmermann
,
E. A.
,
Naleway
,
S. E.
,
Ritchie
,
R. O.
, and
Kruzic
,
J. J.
,
2017
, “
Multiscale Structure and Damage Tolerance of Coconut Shells
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
76
84
.
26.
Huss
,
J. C.
,
Antreich
,
S. J.
,
Bachmayr
,
J.
,
Xiao
,
N.
,
Eder
,
M.
,
Konnerth
,
J.
, and
Gierlinger
,
N.
,
2020
, “
Topological Interlocking and Geometric Stiffening As Complementary Strategies for Strong Plant Shells
,”
Adv. Mater.
,
32
(
48
), p.
2004519
.
27.
Seidel
,
R.
,
Thielen
,
M.
,
Schmitt
,
C.
,
Bührig-Polaczek
,
A.
,
Fleck
,
C.
, and
Speck
,
T.
,
2010
,
Fruit Walls and Nut Shells As an Inspiration for the Design of Bio-inspired Impact Resistant Hierarchically Structured Materials
,
Pisa
,
Italy
, pp.
421
430
.
28.
Thielen
,
M.
,
Schmitt
,
C. N. Z.
,
Eckert
,
S.
,
Speck
,
T.
, and
Seidel
,
R.
,
2013
, “
Structure–Function Relationship of the Foam-Like Pomelo Peel (Citrus Maxima)—An Inspiration for the Development of Biomimetic Damping Materials With High Energy Dissipation
,”
Bioinspir. Biomim.
,
8
(
2
), p.
25001
.
29.
Speck
,
T.
, and
Burgert
,
I.
,
2011
, “
Plant Stems: Functional Design and Mechanics
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
169
193
.
30.
Achrai
,
B.
, and
Wagner
,
H. D.
,
2013
, “
Micro-Structure and Mechanical Properties of the Turtle Carapace As a Biological Composite Shield
,”
Acta Biomater.
,
9
(
4
), pp.
5890
5902
.
31.
Wang
,
B.
,
Yang
,
W.
,
Sherman
,
V. R.
, and
Meyers
,
M. A.
,
2016
, “
Pangolin Armor: Overlapping, Structure, and Mechanical Properties of the Keratinous Scales
,”
Acta Biomater.
,
41
, pp.
60
74
.
32.
Lin
,
A. Y. M.
,
Meyers
,
M. A.
, and
Vecchio
,
K. S.
,
2006
, “
Mechanical Properties and Structure of Strombus Gigas, Tridacna Gigas, and Haliotis Rufescens Sea Shells: A Comparative Study
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1380
1389
.
33.
Yang
,
W.
,
Chen
,
I. H.
,
Gludovatz
,
B.
,
Zimmermann
,
E. A.
,
Ritchie
,
R. O.
, and
Meyers
,
M. A.
,
2013
, “
Natural Flexible Dermal Armor
,”
Adv. Mater.
,
25
(
1
), pp.
31
48
.
34.
Rivera
,
J.
,
Hosseini
,
M. S.
,
Restrepo
,
D.
,
Murata
,
S.
,
Vasile
,
D.
,
Parkinson
,
D. Y.
,
Barnard
,
H. S.
,
Arakaki
,
A.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2020
, “
Toughening Mechanisms of the Elytra of the Diabolical Ironclad Beetle
,”
Nature
,
586
(
7830
), pp.
543
548
.
35.
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2008
, “
Structure and Mechanical Properties of Crab Exoskeletons
,”
Acta Biomater.
,
4
(
3
), pp.
587
596
.
36.
Lin
,
Y. S.
,
Wei
,
C. T.
,
Olevsky
,
E. A.
, and
Meyers
,
M. A.
,
2011
, “
Mechanical Properties and the Laminate Structure of Arapaima Gigas Scales
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1145
1156
.
37.
Lin
,
A.
, and
Meyers
,
M. A.
,
2005
, “
Growth and Structure in Abalone Shell
,”
Mater. Sci. Eng. A
,
390
(
1
), pp.
27
41
.
38.
Wu
,
J.
,
Qin
,
Z.
,
Qu
,
L.
,
Zhang
,
H.
,
Deng
,
F.
, and
Guo
,
M.
,
2019
, “
Natural Hydrogel in American Lobster: A Soft Armor With High Toughness and Strength
,”
Acta Biomater.
,
88
, pp.
102
110
.
39.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
40.
Rho
,
J.-Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.
41.
Olszta
,
M. J.
,
Cheng
,
X.
,
Jee
,
S. S.
,
Kumar
,
R.
,
Kim
,
Y.-Y.
,
Kaufman
,
M. J.
,
Douglas
,
E. P.
, and
Gower
,
L. B.
,
2007
, “
Bone Structure and Formation: A New Perspective
,”
Mater. Sci. Eng. R Rep.
,
58
(
3
), pp.
77
116
.
42.
Weaver
,
J. C.
,
Milliron
,
G. W.
,
Miserez
,
A.
,
Evans-Lutterodt
,
K.
,
Herrera
,
S.
,
Gallana
,
I.
,
Mershon
,
W. J.
, et al
,
2012
, “
The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
,”
Science
,
336
(
6086
), pp.
1275
1280
.
43.
Huang
,
W.
,
Yaraghi
,
N. A.
,
Yang
,
W.
,
Velazquez-Olivera
,
A.
,
Li
,
Z.
,
Ritchie
,
R. O.
,
Kisailus
,
D.
,
Stover
,
S. M.
, and
McKittrick
,
J.
,
2019
, “
A Natural Energy Absorbent Polymer Composite: The Equine Hoof Wall
,”
Acta Biomater.
,
90
, pp.
267
277
.
44.
Huang
,
W.
,
Zaheri
,
A.
,
Jung
,
J.-Y.
,
Espinosa
,
H. D.
, and
Mckittrick
,
J.
,
2017
, “
Hierarchical Structure and Compressive Deformation Mechanisms of Bighorn Sheep (Ovis Canadensis) Horn
,”
Acta Biomater.
,
64
, pp.
1
14
.
45.
Ackbarow
,
T.
, and
Buehler
,
M. J.
,
2007
, “
Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Intermediate Filament Protein Networks
,”
Nature Precedings
.
46.
Ni
,
B.
,
Kaplan
,
D. L.
, and
Buehler
,
M. J.
,
2023
, “
Generative Design of de Novo Proteins Based on Secondary Structure Constraints Using an Attention-Based Diffusion Model
,”
Chem.
47.
Prum
,
R. O.
,
1999
, “
Development and Evolutionary Origin of Feathers
,”
J. Exp. Zool.
,
285
(
4
), pp.
291
306
.
48.
Lee
,
N.
,
Horstemeyer
,
M. F.
,
Rhee
,
H.
,
Nabors
,
B.
,
Liao
,
J.
, and
Williams
,
L. N.
,
2014
, “
Hierarchical Multiscale Structure–Property Relationships of the Red-Bellied Woodpecker (Melanerpes Carolinus) Beak
,”
J. R. Soc. Interface
,
11
(
96
), p.
20140274
.
49.
Chen
,
P.-Y.
,
Lin
,
A. Y. M.
,
Lin
,
Y.-S.
,
Seki
,
Y.
,
Stokes
,
A. G.
,
Peyras
,
J.
,
Olevsky
,
E. A.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
,
2008
, “
Structure and Mechanical Properties of Selected Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
3
), pp.
208
226
.
50.
Wang
,
L.
,
Lu
,
S.
,
Liu
,
X.
,
Niu
,
X.
,
Wang
,
C.
,
Ni
,
Y.
,
Zhao
,
M.
,
Feng
,
C.
,
Zhang
,
M.
, and
Fan
,
Y.
,
2013
, “
Biomechanism of Impact Resistance in the Woodpecker’s Head and Its Application
,”
Sci. Chin. Life Sci.
,
56
(
8
), pp.
715
719
.
51.
Seki
,
Y.
,
Mackey
,
M.
, and
Meyers
,
M. A.
,
2012
, “
Structure and Micro-Computed Tomography-Based Finite Element Modeling of Toucan Beak
,”
J. Mech. Behav. Biomed. Mater.
,
9
, pp.
1
8
.
52.
Wang
,
L.
,
Zhang
,
H.
, and
Fan
,
Y.
,
2011
, “
Comparative Study of the Mechanical Properties, Micro-structure, and Composition of the Cranial and Beak Bones of the Great Spotted Woodpecker and the Lark Bird
,”
Sci. Chin. Life Sci.
,
54
(
11
), pp.
1036
1041
.
53.
Seki
,
Y.
,
Bodde
,
S. G.
, and
Meyers
,
M. A.
,
2010
, “
Toucan and Hornbill Beaks: A Comparative Study
,”
Acta Biomater.
,
6
(
2
), pp.
331
343
.
54.
Lazarus
,
B. S.
,
Velasco-Hogan
,
A.
,
Gómez-del Río
,
T.
,
Meyers
,
M. A.
, and
Jasiuk
,
I.
,
2020
, “
A Review of Impact Resistant Biological and Bioinspired Materials and Structures
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
15705
15738
.
55.
Lazarus
,
B. S.
,
Luu
,
R. K.
,
Ruiz-Pérez
,
S.
,
Bezerra
,
W. B. A.
,
Becerra-Santamaria
,
K.
,
Leung
,
V.
,
Durazo
,
V. H. L.
,
Jasiuk
,
I.
,
Barbosa
,
J. D. V.
, and
Meyers
,
M. A.
,
2022
, “
Equine Hoof Wall: Structure, Properties, and Bioinspired Designs
,”
Acta Biomater.
,
151
, pp.
426
445
.
56.
Suksangpanya
,
N.
,
Yaraghi
,
N. A.
,
Pipes
,
R. B.
,
Kisailus
,
D.
, and
Zavattieri
,
P.
,
2018
, “
Crack Twisting and Toughening Strategies in Bouligand Architectures
,”
Int. J. Solids Struct.
,
150
, pp.
83
106
.
57.
Ha
,
N. S.
, and
Lu
,
G.
,
2020
, “
A Review of Recent Research on Bio-inspired Structures and Materials for Energy Absorption Applications
,”
Compos. B Eng.
,
181
, p.
107496
.
58.
Huang
,
W.
,
Restrepo
,
D.
,
Jung
,
J.-Y.
,
Su
,
F. Y.
,
Liu
,
Z.
,
Ritchie
,
R. O.
,
McKittrick
,
J.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2019
, “
Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs
,”
Adv. Mater.
,
31
(
43
), p.
1901561
.
59.
Yang
,
W.
,
Meyers
,
M. A.
, and
Ritchie
,
R. O.
,
2019
, “
Structural Architectures with Toughening Mechanisms in Nature: A Review of the Materials Science of Type-I Collagenous Materials
,”
Prog. Mater. Sci.
,
103
, pp.
425
483
.
60.
Ghazlan
,
A.
,
Ngo
,
T.
,
Tan
,
P.
,
Xie
,
Y. M.
,
Tran
,
P.
, and
Donough
,
M.
,
2021
, “
Inspiration From Nature’s Body Armours—A Review of Biological and Bioinspired Composites
,”
Compos. B Eng.
,
205
, p.
108513
.
61.
Gu
,
G. X.
,
Chen
,
C. T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
.
62.
Wang
,
L.
,
Cui
,
Y.
,
Qin
,
Q.
,
Wang
,
H.
, and
Wang
,
J.
,
2016
, “
Helical Fiber Pull-Out in Biological Materials
,”
Acta Mech. Solida Sin.
,
29
(
3
), pp.
245
256
.
63.
Nepal
,
D.
,
Kang
,
S.
,
Adstedt
,
K. M.
,
Kanhaiya
,
K.
,
Bockstaller
,
M. R.
,
Brinson
,
L. C.
,
Buehler
,
M. J.
, et al
,
2022
, “
Hierarchically Structured Bioinspired Nanocomposites
,”
Nat. Mater.
,
22
(
1
), pp.
18
35
.
64.
Liu
,
Z.
,
Meyers
,
M. A.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2017
, “
Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications
,”
Prog. Mater. Sci.
,
88
, pp.
467
498
.
65.
Gu
,
G. X.
,
Takaffoli
,
M.
, and
Buehler
,
M. J.
,
2017
, “
Hierarchically Enhanced Impact Resistance of Bioinspired Composites
,”
Adv. Mater.
,
29
(
28
), p.
1700060
.
66.
Larson
,
N. M.
,
Mueller
,
J.
,
Chortos
,
A.
,
Davidson
,
Z. S.
,
Clarke
,
D. R.
, and
Lewis
,
J. A.
,
2023
, “
Rotational Multimaterial Printing of Filaments With Subvoxel Control
,”
Nature
,
613
(
7945
), pp.
682
688
.
67.
Le Duigou
,
A.
,
Castro
,
M.
,
Bevan
,
R.
, and
Martin
,
N.
,
2016
, “
3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality
,”
Mater. Des.
,
96
, pp.
106
114
.
68.
Lee
,
N. A.
,
Shen
,
S. C.
, and
Buehler
,
M. J.
,
2022
, “
An Automated Biomateriomics Platform for Sustainable Programmable Materials Discovery
,”
Matter
,
5
(
11
), pp.
3597
3613
.
69.
Shen
,
S. C.
, and
Buehler
,
M. J.
,
2022
, “
Nature-Inspired Architected Materials Using Unsupervised Deep Learning
,”
Commun. Eng.
,
1
(
1
), p.
37
.
70.
Deagen
,
M. E.
,
Brinson
,
L. C.
,
Vaia
,
R. A.
, and
Schadler
,
L. S.
,
2022
, “
The Materials Tetrahedron Has a ‘Digital Twin,’
,”
MRS Bull.
,
47
(
4
), pp.
379
388
.
71.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2021
, “
A Deep Learning Augmented Genetic Algorithm Approach to Polycrystalline 2D Material Fracture Discovery and Design
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041414
.
72.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2023
, “
Single-Shot Forward and Inverse Hierarchical Architected Materials Design for Nonlinear Mechanical Properties Using an Attention-Diffusion Model
,”
Mater. Today.
73.
Buehler
,
M. J.
,
2022
, “
Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model
,”
ASME J. Appl. Mech.
,
89
(
12
), p.
121009
.
74.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1997
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Netw.
,
9
(
5
), pp.
987
1000
.
75.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
76.
Buehler
,
M. J.
,
2022
, “
Prediction of Atomic Stress Fields Using Cycle-Consistent Adversarial Neural Networks Based on Unpaired and Unmatched Sparse Datasets
,”
Mater. Adv.
,
3
(
15
), pp.
6280
6290
.
77.
Buehler
,
M. J.
,
2023
, “
Unsupervised Cross-Domain Translation Via Deep Learning and Adversarial Attention Neural Networks and Application to Music-Inspired Protein Designs
,”
Patterns
,
4
(
3
), p.
100692
.
78.
Hsu
,
Y.-C.
,
Yang
,
Z.
, and
Buehler
,
M. J.
,
2022
, “
Generative Design, Manufacturing, and Molecular Modeling of 3D Architected Materials Based on Natural Language Input
,”
APL Mater.
,
10
(
4
), p.
041107
.
79.
Buehler
,
M. J.
,
2022
, “
FieldPerceiver: Domain Agnostic Transformer Model to Predict Multiscale Physical Fields and Nonlinear Material Properties Through Neural Ologs
,”
Mater. Today
,
57
, pp.
9
25
.
80.
Su
,
I.
,
Qin
,
Z.
,
Bisshop
,
A.
,
Muehlethaler
,
R.
,
Ziporyn
,
E.
, and
Buehler
,
M. J.
,
2020
, “
Sonification of a 3D Spider Web and Reconstitution Into Musical Composition Using Granular Synthesis
,”
Comput. Music J.
,
44
(
4
), pp.
1
17
.
81.
Su
,
I.
,
Hattwick
,
I.
,
Southworth
,
C.
,
Ziporyn
,
E.
,
Bisshop
,
A.
,
Mühlethaler
,
R.
,
Saraceno
,
T.
, and
Buehler
,
M. J.
,
2021
, “
Interactive Exploration of a Hierarchical Spider Web Structure with Sound
,”
J. Multimodal User Interfaces
,
16
(
1
), pp.
71
85
.
82.
Yang
,
Z.
,
Buehler
,
M. J.
,
Yang
,
Z.
, and
Buehler
,
M. J.
,
2023
, “
Fill in the Blank: Transferrable Deep Learning Approaches to Recover Missing Physical Field Information
,”
Adv. Mater.
, p.
2301449
.
83.
Yang
,
Z.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Complex Stress and Strain Fields in Hierarchical Composites
,”
Sci. Adv.
,
7
(
15
), p.
eabd7416
.
84.
Yang
,
Z.
,
Yu
,
C.-H.
,
Guo
,
K.
, and
Buehler
,
M. J.
,
2021
, “
End-to-End Deep Learning Method to Predict Complete Strain and Stress Tensors for Complex Hierarchical Composite Microstructures
,”
J. Mech. Phys. Solids
,
154
, p.
104506
.
85.
Hu
,
Y.
, and
Buehler
,
M. J.
,
2023
, “
Deep Language Models for Interpretative and Predictive Materials Science
,”
APL Mach. Learn.
,
1
(
1
), p.
010901
.
86.
Tshitoyan
,
V.
,
Dagdelen
,
J.
,
Weston
,
L.
,
Dunn
,
A.
,
Rong
,
Z.
,
Kononova
,
O.
,
Persson
,
K. A.
,
Ceder
,
G.
, and
Jain
,
A.
,
2019
, “
Unsupervised Word Embeddings Capture Latent Knowledge From Materials Science Literature
,”
Nature
,
571
(
7763
), pp.
95
98
.
87.
Bubeck
,
S.
,
Chandrasekaran
,
V.
,
Eldan
,
R.
,
Gehrke
,
J.
,
Horvitz
,
E.
,
Kamar
,
E.
,
Lee
,
P.
, et al
,
2023
, “
Sparks of Artificial General Intelligence: Early Experiments With GPT-4
,”
arXiv
. https://arxiv.org/abs/2303.12712
88.
Lee
,
N. A.
,
Shen
,
S. C.
, and
Buehler
,
M. J.
,
2022
, “
An Automated Biomateriomics Platform for Sustainable Programmable Materials Discovery
,”
Matter
,
5
(
11
), pp.
3597
3613
.
89.
Stach
,
E.
,
DeCost
,
B.
,
Kusne
,
A. G.
,
Hattrick-Simpers
,
J.
,
Brown
,
K. A.
,
Reyes
,
K. G.
,
Schrier
,
J.
, et al
,
2021
, “
Autonomous Experimentation Systems for Materials Development: A Community Perspective
,”
Matter
,
4
(
9
), pp.
2702
2726
.
90.
Shen
,
S. C.
, and
Buehler
,
M. J.
,
2022
, “
Nature-Inspired Architected Materials Using Unsupervised Deep Learning
,”
Commun. Eng.
,
1
(
1
), pp.
1
15
.
91.
Devlin
,
J.
,
Chang
,
M. W.
,
Lee
,
K.
, and
Toutanova
,
K.
, “
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
,”
NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies—Proceedings of the Conference
,
Minneapolis, MN
,
June 2–7
, Vol. 1, pp.
4171
4186
.
92.
Shen
,
S. C. y.
,
Fernández
,
P.
,
Tozzi
,
M.
,
and Buehler
,
G.
, and
J
,
M.
,
2021
, “
Deep Learning Approach to Assess Damage Mechanics of Bone Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104761
.
93.
Yu
,
C. H.
,
Tseng
,
B. Y.
,
Yang
,
Z.
,
Tung
,
C. C.
,
Zhao
,
E.
,
Ren
,
Z. F.
,
Yu
,
S. S.
,
Chen
,
P. Y.
,
Chen
,
C. S.
, and
Buehler
,
M. J.
,
2022
, “
Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning
,”
Adv. Theory Simul.
,
5
(
11
), p.
2200459
.
94.
Yang
,
Z.
,
Hsu
,
Y. C.
, and
Buehler
,
M. J.
,
2023
, “
Generative Multiscale Analysis of de Novo Proteome-Inspired Molecular Structures and Nanomechanical Optimization Using a VoxelPerceiver Transformer Model
,”
J. Mech. Phys. Solids
,
170
, p.
105098
.
95.
Buehler
,
E. L.
, and
Buehler
,
M. J.
,
2022
, “
End-to-End Prediction of Multimaterial Stress Fields and Fracture Patterns Using Cycle-Consistent Adversarial and Transformer Neural Networks
,”
Biomed. Eng. Adv.
,
4
, p.
100038
.
96.
Corso
,
G.
,
Cavalleri
,
L.
,
Beaini
,
D.
,
Liò
,
P.
, and
Velickovic
,
P.
,
2020
, “
Principal Neighbourhood Aggregation for Graph Nets
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
13260
13271
.
97.
Guo
,
K.
, and
Buehler
,
M. J.
,
2022
, “
Rapid Prediction of Protein Natural Frequencies Using Graph Neural Networks
,”
Digital Discovery
,
1
(
3
), pp.
277
285
.
98.
Lu
,
W.
,
Yang
,
Z.
, and
Buehler
,
M. J.
,
2022
, “
Rapid Mechanical Property Prediction and de Novo Design of Three-Dimensional Spider Webs Through Graph and GraphPerceiver Neural Networks
,”
J. Appl. Phys.
,
132
(
7
), p.
074703
.
99.
Buehler
,
E. L.
,
Su
,
I.
, and
Buehler
,
M. J.
,
2021
, “
WebNet: A Biomateriomic Three-Dimensional Spider Web Neural Net
,”
Extreme Mech. Lett.
,
42
, p.
101034
.
100.
Hu
,
Y.
, and
Buehler
,
M. J.
,
2022
, “
End-to-End Protein Normal Mode Frequency Predictions Using Language and Graph Models and Application to Sonification
,”
ACS Nano
,
16
(
12
), pp.
20656
20670
.
101.
Hinton
,
G.
, and
Zemel
,
R.
,
1994
, “
Autoencoders, Minimum Description Length and Helmholtz Free Energy
,”
Adv. Neural Inf. Process. Syst.
,
6
, pp.
3
10
. https://dl.acm.org/doi/abs/10.5555/2987189.2987190
102.
Dong
,
G.
,
Liao
,
G.
,
Liu
,
H.
, and
Kuang
,
G.
,
2018
, “
A Review of the Autoencoder and Its Variants: A Comparative Perspective From Target Recognition in Synthetic-Aperture Radar Images
,”
IEEE Geosci. Remote Sens. Mag.
,
6
(
3
), pp.
44
68
.
103.
Buehler
,
M. J.
,
2022
, “
Multiscale Modeling at the Interface of Molecular Mechanics and Natural Language Through Attention Neural Networks
,”
Acc. Chem. Res.
,
55
(
23
), pp.
3387
3403
.
104.
Hu
,
Y.
, and
Buehler
,
M. J.
,
2023
, “
Deep Language Models for Interpretative and Predictive Materials Science
,”
APL Mach. Learn.
,
1
(
1
), p.
10901
.
105.
Buehler
,
M. J.
,
2022
, “
Generating 3D Architectured Nature-Inspired Materials and Granular Media Using Diffusion Models Based on Language Cues
,”
Oxf. Open Mater. Sci.
,
2
(
1
), p.
itac010
.
106.
Buehler
,
M. J.
,
2023
, “
Predicting Mechanical Fields Near Cracks Using a Progressive Transformer Diffusion Model and Exploration of Generalization Capacity
,”
J. Mater. Res.
,
38
(
5
), pp.
1
15
.
107.
Izadinia
,
H.
,
Saleemi
,
I.
, and
Shah
,
M.
,
2012
, “
Multimodal Analysis for Identification and Segmentation of Moving-Sounding Objects
,”
IEEE Trans. Multimedia
,
15
(
2
), pp.
378
390
.
108.
Ha
,
D. Q.
, and
Carstensen
,
J. V.
,
2023
, “
Human-Informed Topology Optimization: Interactive Application of Feature Size Controls
,”
Struct. Multidiscipl. Optim.
,
66
(
3
), pp.
1
15
.
109.
Wolfram
,
S.
,
2023
,
What Is ChatGPT Doing … and Why Does It Work?
Wolfram Research, Inc.
110.
Wolfram|Alpha As the Way to Bring Computational Knowledge Superpowers to ChatGPT—Stephen Wolfram Writings
.” https://writings.stephenwolfram.com/2023/01/wolframalpha-as-the-way-to-bring-computational-knowledge-superpowers-to-chatgpt/ (Accessed March 30, 2023).
111.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
, et al
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
112.
Guo
,
K.
,
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
,
2021
, “
Artificial Intelligence and Machine Learning in Design of Mechanical Materials
,”
Mater. Horiz.
,
8
(
4
), pp.
1153
1172
.
113.
Yu
,
C. H.
,
Chen
,
W.
,
Chiang
,
Y. H.
,
Guo
,
K.
,
Martin Moldes
,
Z.
,
Kaplan
,
D. L.
, and
Buehler
,
M. J.
,
2022
, “
End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins
,”
ACS Biomater. Sci. Eng.
,
8
(
3
), pp.
1156
1165
.
114.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Model Simul. Mat. Sci. Eng.
,
18
(
1
), p.
015012
.
115.
Fenley
,
A. T.
,
Muddana
,
H. S.
, and
Gilson
,
M. K.
,
2014
, “
Calculation and Visualization of Atomistic Mechanical Stresses in Nanomaterials and Biomolecules
,”
PLoS One
,
9
(
12
), p.
e113119
.
116.
Thoppilan
,
R.
,
De Freitas
,
D.
,
Hall
,
J.
,
Shazeer
,
N.
,
Kulshreshtha
,
A.
,
Cheng
,
H.-T.
,
Jin
,
A.
, et al
,
2022
, “
LaMDA: Language Models for Dialog Applications
,”
arXiv [Preprint]
. https://arxiv.org/abs/2201.08239
117.
“Bard.” https://bard.google.com/, Accessed March 28, 2023.
118.
“DALL·E 2.” https://openai.com/product/dall-e-2, Accessed March 28, 2023.
119.
Kasapi
,
M. A.
, and
Gosline
,
J. M.
,
1997
, “
Design Complexity and Fracture Control in the Equine Hoof Wall
,”
J. Exp. Biol.
,
200
(
11
), pp.
1639
1659
.
120.
Gilman
,
J. W.
, and
Natarajan
,
B.
,
2012
, “
Bioinspired Bouligand Cellulose Nanocrystal Composites: A Review of Mechanical Properties
,”
Philosophical Transactions of the Royal Society A
,
375
(
2093
).
121.
Seki
,
Y.
,
Schneider
,
M. S.
, and
Meyers
,
M. A.
,
2005
, “
Structure and Mechanical Behavior of a Toucan Beak
,”
Acta Mater.
,
53
(
20
), pp.
5281
5296
.
122.
Buehler
,
M. J.
,
2022
, “Diatom-Inspired Architected Materials Using Language-Based Deep Learning: Perception, Transformation and Manufacturing,”
Perspectives on the Mechanics of Fracture and Biological Materials
,
Department of Mechanical, Manufacturing, & Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland & Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
,
Dublin, Ireland
. https://arxiv.org/abs/2301.05875.
You do not currently have access to this content.