Abstract

Most of the resistive-type stretchable strain sensors exhibit large sensing ranges and high sensitivity but suboptimal repeatability and linearity because of the contact-resistance mechanism. To achieve high repeatability and linearity, several sensors with contact-resistance-free structures are proposed. However, due to the different geometric layouts of the conductive materials and the insulating substrates, the patterning of these sensors requires multiple processes including photolithography and etching, which may cause high costs and are not suitable for consumer wearable applications. Here, we report a design for stretchable strain sensors based on a one-step patterned contact-resistance-free structure, i.e., the independent-sensing-and-stretchable-function structure (ISSFS). The stretchability mainly comes from the overall large deformation of the wide curved segments (the stretchable parts), while the resistance variation is mainly attributed to the tensile strain of the narrow straight segments (the sensing parts). High linearity (R2 = 0.999) and repeatability (repeatability error = 1.44%) are achieved because neither unstable contact resistance nor nonlinear constitutive and geometric behaviors occur during the sensing process. The conductive materials and the insulating substrates do not need to have different geometric layouts; thus, they can be patterned by only one-step laser cutting. The proposed sensors show great potential in body-motion detection for wearable devices.

References

1.
Hong
,
W.
,
Jiang
,
C.
,
Qin
,
M.
,
Song
,
Z.
,
Ji
,
P.
,
Wang
,
L.
,
Tu
,
K.
, et al
,
2021
, “
Self-Adaptive Cardiac Optogenetics Device Based on Negative Stretching-Resistive Strain Sensor
,”
Sci. Adv.
,
7
(
48
), p.
eabj4273
.
2.
Mo
,
F.
,
Huang
,
Y.
,
Li
,
Q.
,
Wang
,
Z.
,
Jiang
,
R.
,
Gai
,
W.
, and
Zhi
,
C.
,
2021
, “
A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Super-Tough Hydro/Organo-Gels
,”
Adv. Funct. Mater.
,
31
(
28
), p.
2010830
.
3.
Tan
,
C.
,
Dong
,
Z.
,
Li
,
Y.
,
Zhao
,
H.
,
Huang
,
X.
,
Zhou
,
Z.
,
Jiang
,
J.-W.
, et al
,
2020
, “
A High Performance Wearable Strain Sensor With Advanced Thermal Management for Motion Monitoring
,”
Nat. Commun.
,
11
(
1
), p.
3530
.
4.
Li
,
L.
,
Xiang
,
H.
,
Xiong
,
Y.
,
Zhao
,
H.
,
Bai
,
Y.
,
Wang
,
S.
,
Sun
,
F.
, et al
,
2018
, “
Ultrastretchable Fiber Sensor with High Sensitivity in Whole Workable Range for Wearable Electronics and Implantable Medicine
,”
Adv. Sci.
,
5
(
9
), p.
1800558
.
5.
Liu
,
Q.
,
Chen
,
J.
,
Li
,
Y.
, and
Shi
,
G.
,
2016
, “
High-Performance Strain Sensors With Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions
,”
ACS Nano
,
10
(
8
), pp.
7901
7906
.
6.
Cheng
,
Y.
,
Wang
,
R.
,
Sun
,
J.
, and
Gao
,
L.
,
2015
, “
A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion
,”
Adv. Mater.
,
27
(
45
), pp.
7365
7371
.
7.
Kang
,
D.
,
Pikhitsa
,
P. V.
,
Choi
,
Y. W.
,
Lee
,
C.
,
Shin
,
S. S.
,
Piao
,
L.
,
Park
,
B.
,
Suh
,
K.-Y.
,
Kim
,
T.
, and
Choi
,
M.
,
2014
, “
Ultrasensitive Mechanical Crack-Based Sensor Inspired by the Spider Sensory System
,”
Nature
,
516
(
7530
), pp.
222
226
.
8.
Amjadi
,
M.
,
Pichitpajongkit
,
A.
,
Lee
,
S.
,
Ryu
,
S.
, and
Park
,
I.
,
2014
, “
Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite
,”
ACS Nano
,
8
(
5
), pp.
5154
5163
.
9.
Zhang
,
Y.
,
Yang
,
J.
,
Hou
,
X.
,
Li
,
G.
,
Wang
,
L.
,
Bai
,
N.
,
Cai
,
M.
, et al
,
2022
, “
Highly Stable Flexible Pressure Sensors With a Quasi-Homogeneous Composition and Interlinked Interfaces
,”
Nat. Commun.
,
13
(
1
), p.
1317
.
10.
Lee
,
S.
,
Franklin
,
S.
,
Hassani
,
F. A.
,
Yokota
,
T.
,
Nayeem
,
O. G.
,
Wang
,
Y.
,
Leib
,
R.
,
Cheng
,
G.
,
Franklin
,
D. W.
, and
Someya
,
T.
,
2020
, “
Nanomesh Pressure Sensor for Monitoring Finger Manipulation Without Sensory Interference
,”
Science
,
370
(
6519
), pp.
966
970
.
11.
Sundaram
,
S.
,
Kellnhofer
,
P.
,
Li
,
Y.
,
Zhu
,
J.-Y.
,
Torralba
,
A.
, and
Matusik
,
W.
,
2019
, “
Learning the Signatures of the Human Grasp Using a Scalable Tactile Glove
,”
Nature
,
569
(
7758
), pp.
698
702
.
12.
Lee
,
Y.
,
Park
,
J.
,
Cho
,
S.
,
Shin
,
Y.-E.
,
Lee
,
H.
,
Kim
,
J.
,
Myoung
,
J.
, et al
,
2018
, “
Flexible Ferroelectric Sensors With Ultrahigh Pressure Sensitivity and Linear Response Over Exceptionally Broad Pressure Range
,”
ACS Nano
,
12
(
4
), pp.
4045
4054
.
13.
Lee
,
S.
,
Reuveny
,
A.
,
Reeder
,
J.
,
Lee
,
S.
,
Jin
,
H.
,
Liu
,
Q.
,
Yokota
,
T.
, et al
,
2016
, “
A Transparent Bending-Insensitive Pressure Sensor
,”
Nat. Nanotechnol.
,
11
(
5
), pp.
472
478
.
14.
Sun
,
J.-Y.
,
Keplinger
,
C.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2014
, “
Ionic Skin
,”
Adv. Mater.
,
26
(
45
), pp.
7608
7614
.
15.
Lu
,
Y.
,
Fujita
,
Y.
,
Honda
,
S.
,
Yang
,
S.-H.
,
Xuan
,
Y.
,
Xu
,
K.
,
Arie
,
T.
,
Akita
,
S.
, and
Takei
,
K.
,
2021
, “
Wireless and Flexible Skin Moisture and Temperature Sensor Sheets Toward the Study of Thermoregulator Center
,”
Adv. Healthcare Mater.
,
10
(
17
), p.
2100103
.
16.
Yamamoto
,
Y.
,
Yamamoto
,
D.
,
Takada
,
M.
,
Naito
,
H.
,
Arie
,
T.
,
Akita
,
S.
, and
Takei
,
K.
,
2017
, “
Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch
,”
Adv. Healthcare Mater.
,
6
(
17
), p.
1700495
.
17.
Ren
,
X.
,
Pei
,
K.
,
Peng
,
B.
,
Zhang
,
Z.
,
Wang
,
Z.
,
Wang
,
X.
, and
Chan
,
P. K. L.
,
2016
, “
A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array
,”
Adv. Mater.
,
28
(
24
), pp.
4832
4838
.
18.
Wang
,
P.
,
Hu
,
M.
,
Wang
,
H.
,
Chen
,
Z.
,
Feng
,
Y.
,
Wang
,
J.
,
Ling
,
W.
, and
Huang
,
Y.
,
2020
, “
The Evolution of Flexible Electronics: From Nature, Beyond Nature, and to Nature
,”
Adv. Sci.
,
7
(
20
), p.
2001116
.
19.
Zhao
,
H.
,
Kim
,
Y.
,
Wang
,
H.
,
Ning
,
X.
,
Xu
,
C.
,
Suh
,
J.
,
Han
,
M.
, et al
,
2021
, “
Compliant 3D Frameworks Instrumented With Strain Sensors for Characterization of Millimeter-Scale Engineered Muscle Tissues
,”
Proc. Natl. Acad. Sci.
,
118
(
19
), p.
e2100077118
.
20.
Kim
,
K.-H.
,
Hong
,
S. K.
,
Ha
,
S.-H.
,
Li
,
L.
,
Lee
,
H. W.
, and
Kim
,
J.-M.
,
2020
, “
Enhancement of Linearity Range of Stretchable Ultrasensitive Metal Crack Strain Sensor via Superaligned Carbon Nanotube-Based Strain Engineering
,”
Mater. Horiz.
,
7
(
10
), pp.
2662
2672
.
21.
Fu
,
X.
,
Li
,
L.
,
Chen
,
S.
,
Xu
,
H.
,
Li
,
J.
,
Shulga
,
V.
, and
Han
,
W.
,
2021
, “
Knitted Ti3C2T MXene Based Fiber Strain Sensor for Human–Computer Interaction
,”
J. Colloid Interface Sci.
,
604
, pp.
643
649
.
22.
Zhuang
,
M.
,
Yin
,
L.
,
Wang
,
Y.
,
Bai
,
Y.
,
Zhan
,
J.
,
Hou
,
C.
,
Yin
,
L.
,
Xu
,
Z.
,
Tan
,
X.
, and
Huang
,
Y.
,
2021
, “
Highly Robust and Wearable Facial Expression Recognition via Deep-Learning-Assisted, Soft Epidermal Electronics
,”
Research
,
2021
, p.
9759601
.
23.
Araromi
,
O. A.
,
Graule
,
M. A.
,
Dorsey
,
K. L.
,
Castellanos
,
S.
,
Foster
,
J. R.
,
Hsu
,
W.-H.
,
Passy
,
A. E.
, et al
,
2020
, “
Ultra-Sensitive and Resilient Compliant Strain Gauges for Soft Machines
,”
Nature
,
587
(
7833
), pp.
219
224
.
24.
Choi
,
S.
,
Yoon
,
K.
,
Lee
,
S.
,
Lee
,
H. J.
,
Lee
,
J.
,
Kim
,
D. W.
,
Kim
,
M.-S.
,
Lee
,
T.
, and
Pang
,
C.
,
2019
, “
Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Water-Resistant Multimodal Gesture-Distinguishable Sensor, VR Applications
,”
Adv. Funct. Mater.
,
29
(
50
), p.
1905808
.
25.
Lee
,
J.
,
Kim
,
S.
,
Lee
,
J.
,
Yang
,
D.
,
Park
,
B. C.
,
Ryu
,
S.
, and
Park
,
I.
,
2014
, “
A Stretchable Strain Sensor Based on a Metal Nanoparticle Thin Film for Human Motion Detection
,”
Nanoscale
,
6
(
20
), pp.
11932
11939
.
26.
Matsuhisa
,
N.
,
Kaltenbrunner
,
M.
,
Yokota
,
T.
,
Jinno
,
H.
,
Kuribara
,
K.
,
Sekitani
,
T.
, and
Someya
,
T.
,
2015
, “
Printable Elastic Conductors with a High Conductivity for Electronic Textile Applications
,”
Nat. Commun.
,
6
(
1
), p.
7461
.
27.
Boutry
,
C. M.
,
Kaizawa
,
Y.
,
Schroeder
,
B. C.
,
Chortos
,
A.
,
Legrand
,
A.
,
Wang
,
Z.
,
Chang
,
J.
,
Fox
,
P.
, and
Bao
,
Z.
,
2018
, “
A Stretchable and Biodegradable Strain and Pressure Sensor for Orthopaedic Application
,”
Nat. Electron.
,
1
(
5
), pp.
314
321
.
28.
Yu
,
Q.
,
Ge
,
R.
,
Wen
,
J.
,
Du
,
T.
,
Zhai
,
J.
,
Liu
,
S.
,
Wang
,
L.
, and
Qin
,
Y.
,
2022
, “
Highly Sensitive Strain Sensors Based on Piezotronic Tunneling Junction
,”
Nat. Commun.
,
13
(
1
), p.
778
.
29.
Cao
,
X.
,
Xiong
,
Y.
,
Sun
,
J.
,
Zhu
,
X.
,
Sun
,
Q.
, and
Wang
,
Z. L.
,
2021
, “
Piezoelectric Nanogenerators Derived Self-Powered Sensors for Multifunctional Applications and Artificial Intelligence
,”
Adv. Funct. Mater.
,
31
(
33
), p.
2102983
.
30.
Wang
,
X.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Huo
,
Z.
,
Li
,
X.
,
Que
,
M.
,
Peng
,
Z.
,
Wang
,
H.
, and
Pan
,
C.
,
2018
, “
A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
,”
Adv. Mater.
,
30
(
12
), p.
1706738
.
31.
Pan
,
L.
,
Liu
,
G.
,
Shi
,
W.
,
Shang
,
J.
,
Leow
,
W. R.
,
Liu
,
Y.
,
Jiang
,
Y.
,
Li
,
S.
,
Chen
,
X.
, and
Li
,
R.-W.
,
2018
, “
Mechano-Regulated Metal–Organic Framework Nanofilm for Ultrasensitive and Anti-Jamming Strain Sensing
,”
Nat. Commun.
,
9
(
1
), p.
3813
.
32.
Huang
,
S.
,
Zhang
,
B.
,
Shao
,
Z.
,
He
,
L.
,
Zhang
,
Q.
,
Jie
,
J.
, and
Zhang
,
X.
,
2020
, “
Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins
,”
Nano Lett.
,
20
(
4
), pp.
2478
2485
.
33.
Ren
,
Y.
,
Yang
,
X.
,
Chang
,
Y.
,
Shu
,
J.
, and
Luo
,
K.
,
2019
, “
Highly Sensitive and Flexible Strain Sensor Based on Au Thin Film
,”
J. Micromech. Microeng.
,
29
(
1
), p.
015001
.
34.
Lipomi
,
D. J.
,
Vosgueritchian
,
M.
,
Tee
,
B. C.-K.
,
Hellstrom
,
S. L.
,
Lee
,
J. A.
,
Fox
,
C. H.
, and
Bao
,
Z.
,
2011
, “
Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
788
792
.
35.
Wang
,
C.
,
Li
,
X.
,
Gao
,
E.
,
Jian
,
M.
,
Xia
,
K.
,
Wang
,
Q.
,
Xu
,
Z.
,
Ren
,
T.
, and
Zhang
,
Y.
,
2016
, “
Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors
,”
Adv. Mater.
,
28
(
31
), pp.
6640
6648
.
36.
Ryu
,
S.
,
Lee
,
P.
,
Chou
,
J. B.
,
Xu
,
R.
,
Zhao
,
R.
,
Hart
,
A. J.
, and
Kim
,
S.-G.
,
2015
, “
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion
,”
ACS Nano
,
9
(
6
), pp.
5929
5936
.
37.
Kim
,
K. K.
,
Hong
,
S.
,
Cho
,
H. M.
,
Lee
,
J.
,
Suh
,
Y. D.
,
Ham
,
J.
, and
Ko
,
S. H.
,
2015
, “
Highly Sensitive and Stretchable Multidimensional Strain Sensor With Prestrained Anisotropic Metal Nanowire Percolation Networks
,”
Nano Lett.
,
15
(
8
), pp.
5240
5247
.
38.
Gao
,
Y.
,
Guo
,
F.
,
Cao
,
P.
,
Liu
,
J.
,
Li
,
D.
,
Wu
,
J.
,
Wang
,
N.
,
Su
,
Y.
, and
Zhao
,
Y.
,
2020
, “
Winding-Locked Carbon Nanotubes/Polymer Nanofibers Helical Yarn for Ultrastretchable Conductor and Strain Sensor
,”
ACS Nano
,
14
(
3
), pp.
3442
3450
.
39.
Wan
,
S.
,
Zhu
,
Z.
,
Yin
,
K.
,
Su
,
S.
,
Bi
,
H.
,
Xu
,
T.
,
Zhang
,
H.
,
Shi
,
Z.
,
He
,
L.
, and
Sun
,
L.
,
2018
, “
A Highly Skin-Conformal and Biodegradable Graphene-Based Strain Sensor
,”
Small Methods
,
2
(
10
), p.
1700374
.
40.
Yamada
,
T.
,
Hayamizu
,
Y.
,
Yamamoto
,
Y.
,
Yomogida
,
Y.
,
Izadi-Najafabadi
,
A.
,
Futaba
,
D. N.
, and
Hata
,
K.
,
2011
, “
A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection
,”
Nat. Nanotechnol.
,
6
(
5
), pp.
296
301
.
41.
Zhang
,
Y.
,
Ren
,
E.
,
Li
,
A.
,
Cui
,
C.
,
Guo
,
R.
,
Tang
,
H.
,
Xiao
,
H.
, et al
,
2021
, “
A Porous Self-Healing Hydrogel With an Island-Bridge Structure for Strain and Pressure Sensors
,”
J. Mater. Chem. B
,
9
(
3
), pp.
719
730
.
42.
Wang
,
Y.
,
Yang
,
T.
,
Lao
,
J.
,
Zhang
,
R.
,
Zhang
,
Y.
,
Zhu
,
M.
,
Li
,
X.
, et al
,
2015
, “
Ultra-Sensitive Graphene Strain Sensor for Sound Signal Acquisition and Recognition
,”
Nano Res.
,
8
(
5
), pp.
1627
1636
.
43.
Choi
,
S.
,
Kim
,
S.
,
Kim
,
H.
,
Lee
,
B.
,
Kim
,
T.
, and
Hong
,
Y.
,
2020
, “
2-D Strain Sensors Implemented on Asymmetrically Bi-Axially Pre-Strained PDMS for Selectively Switching Stretchable Light-Emitting Device Arrays
,”
IEEE Sens. J.
,
20
(
24
), pp.
14655
14661
.
44.
Zhu
,
G.
,
Ren
,
P.
,
Hu
,
J.
,
Yang
,
J.
,
Jia
,
Y.
,
Chen
,
Z.
,
Ren
,
F.
, and
Gao
,
J.
,
2021
, “
Flexible and Anisotropic Strain Sensors With the Asymmetrical Cross-Conducting Network for Versatile Bio-Mechanical Signal Recognition
,”
ACS Appl. Mater. Interfaces
,
13
(
37
), pp.
44925
44934
.
45.
Liu
,
N.
,
Fang
,
G.
,
Wan
,
J.
,
Zhou
,
H.
,
Long
,
H.
, and
Zhao
,
X.
,
2011
, “
Electrospun PEDOT:PSS–PVA Nanofiber Based Ultrahigh-Strain Sensors With Controllable Electrical Conductivity
,”
J. Mater. Chem.
,
21
(
47
), p.
18962
.
46.
Li
,
S.
,
Liu
,
G.
,
Li
,
R.
,
Li
,
Q.
,
Zhao
,
Y.
,
Huang
,
M.
,
Zhang
,
M.
, et al
,
2021
, “
Contact-Resistance-Free Stretchable Strain Sensors With High Repeatability and Linearity
,”
ACS Nano
,
16
(
1
), pp.
541
553
.
47.
Li
,
S.
,
Liu
,
G.
,
Wang
,
L.
,
Fang
,
G.
, and
Su
,
Y.
,
2020
, “
Overlarge Gauge Factor Yields a Large Measuring Error for Resistive-Type Stretchable Strain Sensors
,”
Adv. Electron. Mater.
,
6
(
11
), p.
2000618
.
48.
Gao
,
Y.
,
Yan
,
C.
,
Huang
,
H.
,
Yang
,
T.
,
Tian
,
G.
,
Xiong
,
D.
,
Chen
,
N.
, et al
,
2020
, “
Microchannel-Confined MXene Based Flexible Piezoresistive Multifunctional Micro-Force Sensor
,”
Adv. Funct. Mater.
,
30
(
11
), p.
1909603
.
49.
Wang
,
S.
,
Deng
,
W.
,
Yang
,
T.
,
Tian
,
G.
,
Xiong
,
D.
,
Xiao
,
X.
,
Zhang
,
H.
, et al
,
2023
, “
Body-Area Sensor Network Featuring Micropyramids for Sports Healthcare
,”
Nano Res.
,
16
(
1
), pp.
1330
1337
.
50.
Su
,
Y.
,
Ping
,
X.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Fan
,
J. A.
,
Wang
,
B.
,
Li
,
M.
, et al
,
2017
, “
In-Plane Deformation Mechanics for Highly Stretchable Electronics
,”
Adv. Mater.
,
29
(
8
), p.
1604989
.
51.
Timoshenko
,
S.
,
1986
,
Strength of Materials
,
CBS Publishers & Distributors
,
Delhi
.
52.
Brosteaux
,
D.
,
Axisa
,
F.
,
Gonzalez
,
M.
, and
Vanfleteren
,
J.
,
2007
, “
Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits
,”
IEEE Electron Device Lett.
,
28
(
7
), pp.
552
554
.
53.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2012
,
Theory and Design for Mechanical Measurements
,
Wiley
,
New York
.
54.
Lee
,
J.
,
Lim
,
M.
,
Yoon
,
J.
,
Kim
,
M. S.
,
Choi
,
B.
,
Kim
,
D. M.
,
Kim
,
D. H.
,
Park
,
I.
, and
Choi
,
S.-J.
,
2017
, “
Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26279
26285
.
55.
Song
,
Z.
,
Li
,
W.
,
Bao
,
Y.
,
Han
,
F.
,
Gao
,
L.
,
Xu
,
J.
,
Ma
,
Y.
,
Han
,
D.
, and
Niu
,
L.
,
2018
, “
Breathable and Skin-Mountable Strain Sensor with Tunable Stretchability, Sensitivity, and Linearity via Surface Strain Delocalization for Versatile Skin Activities’ Recognition
,”
ACS Appl. Mater. Interfaces
,
10
(
49
), pp.
42826
42836
.
56.
O’Malley
,
J.
,
1992
,
Schaum’s Outline of Theory and Problems of Basic Circuit Analysis
,
McGraw-Hill
,
New York
.
57.
Lin
,
T. W.
,
Cardenas
,
L.
, and
Soslowsky
,
L. J.
,
2004
, “
Biomechanics of Tendon Injury and Repair
,”
J. Biomech.
,
37
(
6
), pp.
865
877
.
58.
Won
,
S. M.
,
Wang
,
H.
,
Kim
,
B. H.
,
Lee
,
K.
,
Jang
,
H.
,
Kwon
,
K.
,
Han
,
M.
, et al
,
2019
, “
Multimodal Sensing With a Three-Dimensional Piezoresistive Structure
,”
ACS Nano
,
13
(
10
), pp.
10972
10979
.
59.
Park
,
Y.
,
Kwon
,
K.
,
Kwak
,
S. S.
,
Yang
,
D. S.
,
Kwak
,
J. W.
,
Luan
,
H.
,
Chung
,
T. S.
, et al
,
2020
, “
Wireless, Skin-Interfaced Sensors for Compression Therapy
,”
Sci. Adv.
,
6
(
49
), p.
eabe1655
.
60.
Jeong
,
H.
,
Lee
,
J. Y.
,
Lee
,
K.
,
Kang
,
Y. J.
,
Kim
,
J.-T.
,
Avila
,
R.
,
Tzavelis
,
A.
, et al
,
2021
, “
Differential Cardiopulmonary Monitoring System for Artifact-Canceled Physiological Tracking of Athletes, Workers, and COVID-19 Patients
,”
Sci. Adv.
,
7
(
20
), p.
eabg3092
.
61.
Cai
,
L.
,
Burton
,
A.
,
Gonzales
,
D. A.
,
Kasper
,
K. A.
,
Azami
,
A.
,
Peralta
,
R.
,
Johnson
,
M.
, et al
,
2021
, “
Osseosurface Electronics—Thin, Wireless, Battery-Free and Multimodal Musculoskeletal Biointerfaces
,”
Nat. Commun.
,
12
(
1
), p.
6707
.
62.
Zhao
,
Y.
,
Wang
,
Z.
,
Tan
,
S.
,
Liu
,
Y.
,
Chen
,
S.
,
Li
,
Y.
, and
Hao
,
Q.
,
2022
, “
Dependance of Gauge Factor on Micro-Morphology of Sensitive Grids in Resistive Strain Gauges
,”
Micromachines
,
13
(
2
), p.
280
.
63.
Li
,
J.
,
Li
,
S.
, and
Su
,
Y.
,
2022
, “
Stretchable Strain Sensors Based on Deterministic-Contact-Resistance Braided Structures With High Performance and Capability of Continuous Production
,”
Adv. Funct. Mater.
,
32
(
49
), p.
2208216
.
64.
Wu
,
S.
,
Moody
,
K.
,
Kollipara
,
A.
, and
Zhu
,
Y.
,
2023
, “
Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening
,”
ACS Appl. Mater. Interfaces
,
15
(
1
), pp.
1798
1807
.
65.
Bao
,
M.
,
2005
, “Introduction to MEMS Devices,”
Analysis and Design Principles of MEMS Devices
,
Elsevier
, pp.
1
32
.
66.
Bajpai
,
P.
,
2018
, “Process Control,”
Biermann’s Handbook of Pulp and Paper
,
Elsevier
, pp.
483
492
.
67.
Lee
,
K.-H.
,
Fu
,
D. K. C.
,
Leong
,
M. C. W.
,
Chow
,
M.
,
Fu
,
H.-C.
,
Althoefer
,
K.
,
Sze
,
K. Y.
,
Yeung
,
C.-K.
, and
Kwok
,
K.-W.
,
2017
, “
Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation
,”
Soft Robot.
,
4
(
4
), pp.
324
337
.
68.
Hughes
,
T. J. R.
,
2000
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover Publications
,
Mineola, NY
.
You do not currently have access to this content.