Abstract

This article addresses the small-amplitude forced beam vibrations of two coaxial finite-length cylinders separated by a viscous Newtonian fluid. A new theoretical approach based on an Helmholtz expansion of the fluid velocity vector is carried out, leading to a full analytical expression of the fluid forces and subsequently of the modal added mass and damping coefficients. Our theory shows that the fluid forces are linear combinations of the Fourier harmonics of the vibration modes. The coefficients of the linear combinations are shown to depend on the aspect ratio of the cylinders, on the separation distance, and on the Stokes number. As a consequence, the linear fluid forces do not have, in general, the same shape as the forced vibration mode, so that the fluid makes it possible to couple vibration modes with different wave numbers. Compared to the previous works, the present theory includes the viscous effects of the fluid, accounts for the finite length of the cylinders, does not rely on the assumption of a narrow annulus, and covers in a unique formulation all types of classical boundary conditions for an Euler–Bernoulli beam. The theoretical predictions for the modal added mass and damping coefficients (self and cross) are corroborated numerically, considering rigid, pinned-pinned, and clamped-free vibrations.

References

1.
Paidoussis
,
M. P.
,
2014
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
, 2nd ed.,
Elsevier
,
London
.
2.
Paidoussis
,
M. P.
,
2016
,
Fluid-Structure Interactions. Volume 2: Slender Structures and Axial Flow
, 2nd ed.,
Academic Press
,
London, UK
.
3.
Brown
,
S. J.
,
1982
, “
A Survey of Studies Into the Hydrodynamic Response of Fluid-Coupled Circular Cylinders
,”
J. Pressure. Vessel. Technol.
,
104
(
1
), pp.
2
19
.
4.
Magrab
,
E. B.
, and
Burroughs
,
C.
,
1971
, “
Forced Harmonic and Random Vibrations of Concentric Cylindrical Shells Immersed in Acoustic Fluids
,”
J. Acoust. Soc. Am.
,
52
(
3
), pp.
858
864
.
5.
Chen
,
S. S.
, and
Wambsganss
,
M. W.
,
1972
, “
Parallel-Flow-Induced Vibration of Fuel Rods
,”
Nucl. Eng. Des.
,
18
(
2
), pp.
253
278
.
6.
Levin
,
L.
, and
Milan
,
D.
,
1973
, “
Coupled Breathing Vibrations of Two Thin Cylindrical Coaxial Shells in Fluid
,”
Vibration Problems in Industry, International Symposium
,
Keswick, UK
.
7.
Krajcinovic
,
D.
,
1974
, “
Vibrations of Two Coaxial Cylindrical Shells Containing Fluid
,”
Nucl. Eng. Des.
,
30
(
2
), pp.
242
248
.
8.
Bowers
,
G.
, and
Horvay
,
G.
,
1974
, “
Beam Modes of Vibration of a Thin Cylindrical Shell Flexibly Supported and Immersed in Water Inside of a Coaxial Cylindrical Container of Slightly Larger Radius
,”
Nucl. Eng. Des.
,
26
(
2
), pp.
291
298
.
9.
Chen
,
S. S.
,
Wambsganss
,
M. W.
, and
Jendrzejczyk
,
J. A.
,
1976
, “
Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids
,”
ASME J. Appl. Mech.
,
43
, pp.
325
329
.
10.
Yeh
,
T. T.
, and
Chen
,
S. S.
,
1978
, “
The Effect of Fluid Viscosity on Coupled Tube/fluid Vibrations
,”
J. Sound. Vib.
,
59
(
3
), pp.
453
467
.
11.
Au-Yang
,
M. K.
,
1976
, “
Free Vibration of Fluid-Coupled Coaxial Cylindrical Shells of Different Lengths
,”
ASME J. Appl. Mech.
,
43
(
3
), pp.
480
484
.
12.
Au-Yang
,
M. K.
,
1977
, “
Generalized Hydrodynamic Mass for Beam Mode Vibration of Cylinders Coupled by Fluid Gap
,”
ASME J. Appl. Mech.
,
44
(
1
), pp.
172
173
.
13.
Au-Yang
,
M. K.
,
1986
, “
Dynamics of Coupled Fluid-Shells
,”
J. Vib. Acoust. Stress Reliab. Des.
,
108
(
3
), pp.
339
347
.
14.
Paidoussis
,
M.
, and
Ostoja-Starzewski
,
M.
,
1981
, “
Dynamics of a Flexible Cylinder in Subsonic Axial Flow
,”
AIAA. J.
,
19
(
11
), pp.
1467
1475
.
15.
Fritz
,
R. J.
,
1972
, “
The Effect of Liquids on the Dynamic Motions of Immersed Solids
,”
J. Eng. Ind.
,
94
(
1
), pp.
167
173
.
16.
Horvay
,
G.
, and
Bowers
,
G.
,
1975
, “
Influence of Entrained Water Mass on the Vibration Modes of a Shell
,”
J. Fluid. Eng.
,
97
(
2
), pp.
211
216
.
17.
Bergamaschi
,
Y.
,
Bouilloux
,
Y.
,
Chantoin
,
P.
,
Guigon
,
B.
,
Bravo
,
X.
,
Germain
,
C.
,
Rommens
,
M.
, and
Tremodeux
,
P.
,
2002
, “
Jules Horowitz Reactor, Basic Design
,”
Proceedings of ENC
,
San Carlos de Bariloche, Argentina
,
Nov. 3–8
.
18.
Laurens
,
M.
, “Présentation IFS. Bloc Pile RJH, 2020,” TA–6515496 Ind. A.
19.
Mateescu
,
D.
, and
Paidoussis
,
M. P.
,
1984
, “
Annular-Flow-Induced Vibrations of an Axially Variable Body of Revolution in a Duct of Variable Crosssection
,”
Proceedings of the ASME Symposium on Flow-Induced Vibrations, ASME Winter Annual Meeting
,
M. P.
Paidoussis
and
M. K.
Au-Yang
, eds.,
New Orleans, LA
, ASME, New York, Vol.
4
, pp.
53
69
.
20.
Paidoussis
,
M. P.
,
Mateescu
,
D.
, and
Sim
,
W. -G.
,
1990
, “
Dynamics and Stability of a Flexible Cylinder in a Narrow Coaxial Cylindrical Duct Subjected to Annular Flow
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
232
240
.
21.
Lagrange
,
R.
, and
Puscas
,
M. A.
,
2022
, “
Hydrodynamic Interaction Between Two Flexible Finite Length Coaxial Cylinders: New Theoretical Formulation and Numerical Validation
,”
ASME J. Appl. Mech.
,
89
(
8
), p.
081006
.
22.
Lagrange
,
R.
,
Puscas
,
M. A.
,
Piteau
,
P.
,
Delaune
,
X.
, and
Antunes
,
J.
,
2022
, “
Modal Added-Mass Matrix of an Elongated Flexible Cylinder Immersed in a Narrow Annular Fluid, Considering Various Boundary Conditions. New Theoretical Results and Numerical Validation
,”
J. Fluids Structures
,
114
, p.
103754
.
23.
Panunzio
,
D.
,
Puscas
,
M.-A.
, and
Lagrange
,
R.
,
2022
, “
FSI-Vibrations of Immersed Cylinders. Simulations With the Engineering Open-Source Code TrioCFD. Test Cases and Experimental Comparisons
,”
Comptes Rendus. Mécanique
,
350
(
G3
), pp.
451
476
.
24.
Angeli
,
P. E.
,
Puscas
,
M. A.
,
Fauchet
,
G.
, and
Cartalade
,
A.
,
2017
, “FVCA8 Benchmark for the Stokes and Navier-Stokes Equations With the TrioCFD Code–Benchmark Session,”
Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects
,
Lille, France
,
June 12–16
, pp.
181
202
.
25.
Fiorini
,
C.
,
Després
,
B.
, and
Puscas
,
M. A.
,
2020
, “
Sensitivity Equation Method for the Navier-Stokes Equations Applied to Uncertainty Propagation
,”
Int. J. Numerical Methods Fluids
,
93
, pp.
71
92
.
26.
Puscas
,
M. A.
,
Monasse
,
L.
,
Ern
,
A.
,
Tenaud
,
C.
, and
Mariotti
,
C.
,
2015
, “
A Conservative Embedded Boundary Method for an Inviscid Compressible Flow Coupled With a Fragmenting Structure
,”
Int. J. Numerical Methods Eng.
,
103
, pp.
970
995
.
27.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J. P.
, and
Rodríguez-Ferran
,
A.
,
2004
, “Arbitrary Lagrangian–Eulerian Methods,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
Borst
, and
T. J. R.
Hughes
, eds.,
American Cancer Society
.
You do not currently have access to this content.