Abstract

The prebuckling deformation of structures is neglected in most of the conventional buckling theory (CBT) and numerical method (CNM), because it is usually very small in conventional concepts. In the preceding paper (Su et al., 2019), we found a class of structures from the emerging field of stretchable electronics, of which the prebuckling deformation became large and essential for determining the critical buckling load, and developed a systematic buckling theory for 3D beams considering the effects of finite prebuckling deformation (FPD). For bulk structures that appear vastly in the advanced structures, a few buckling theories consider the effects of the prebuckling deformation in constitutive equations by energy method, which are significantly important but not straightforward and universal enough. In this paper, a systematic and straightforward theory for the FPD buckling of bulk structures is developed with the use of two constitutive models. The variables for the prebuckling deformation serve as the coefficients of the incremental displacements, deformation components, and stress in the buckling analysis. Four methods, including the CBT, CNM, DLU (disturbing-loading-unloading method) method and FPD buckling theory, are applied to the classic problems, including buckling of an elastic semi-plane solid and buckling of an elastic rectangular solid, respectively. Compared with the accurate buckling load from the DLU method, the FPD buckling theory is able to give a good prediction, while the CBT and CNM may yield unacceptable results (with 70% error for the buckling of an elastic semi-plane solid).

References

1.
Euler
,
L.
,
1744
,
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes
,
Apud Marcum-Michaelem Bousquet
.
2.
Lagrange
,
J. L.
,
Serret
,
J. A.
, and
Darboux
,
G.
,
1867
,
Oeuvres de Lagrange
,
Gauthier-Villars
,
Paris
.
3.
Kim
,
D. H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
48
), pp.
18675
18680
.
4.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
5.
Jiang
,
H.
,
Khang
,
D. Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
40
), pp.
15607
15612
.
6.
Fan
,
Z.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids
,
111
, pp.
215
238
.
7.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
8.
Khang
,
D.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2006
, “
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,”
Science
,
311
(
5758
), pp.
208
212
.
9.
Fu
,
Y. B.
, and
Ogden
,
R. W.
,
1999
, “
Nonlinear Stability Analysis of Pre-Stressed Elastic Bodies
,”
Continuum Mech. Thermodyn.
,
11
(
3
), pp.
141
172
.
10.
Fu
,
Y.
, and
Rogerson
,
G. A.
,
1994
, “
A Nonlinear Analysis of Instability of a Pre-Stressed Incompressible Elastic Plate
,”
Proc. R. Soc. London, A
,
446
(
1927
), pp.
233
254
.
11.
Chadwick
,
P.
, and
Ogden
,
R.
,
1971
, “
On the Definition of Elastic Moduli
,”
Arch. Ration. Mech. Anal.
,
44
(
1
), pp.
41
53
.
12.
Su
,
Y.
,
Ping
,
X.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Fan
,
J. A.
,
Wang
,
B.
,
Li
,
M.
, et al
,
2017
, “
In-Plane Deformation Mechanics for Highly Stretchable Electronics
,”
Adv. Mater.
,
29
(
8
), p.
1604989
.
13.
Su
,
Y.
,
Zhao
,
H.
,
Liu
,
S.
,
Li
,
R.
,
Wang
,
Y.
,
Wang
,
Y.
,
Bian
,
J.
, and
Huang
,
Y.
,
2019
, “
Buckling of Beams With Finite Prebuckling Deformation
,”
Int. J. Solids Struct.
,
165
(
15
), pp.
148
159
.
14.
Biot
,
M. A.
,
1938
, “
Theory of Elasticity With Large Displacements and Rotations
,”
Proceedings of the Fifth International Congress of Applied Mechanics
, pp.
117
122
.
15.
Biot
,
M. A.
,
1959
, “
Folding of a Layered Viscoelastic Medium Derived From an Exact Stability Theory of a Continuum Under Initial Stress
,”
Q. Appl. Math.
,
17
(
2
), pp.
185
204
.
16.
Biot
,
M. A.
,
1963
, “
Surface Instability of Rubber in Compression
,”
Appl. Sci. Res.
,
12
(
2
), pp.
168
182
.
17.
Biot
,
M. A.
, and
Romain
,
J. E.
,
1965
, “
Mechanics of Incremental Deformations
,”
J. Appl. Mech.
,
32
(
4
), p.
957
.
18.
Novozhilov
,
V. V.
,
1953
,
Foundations of the Nonlinear Theory of Elasticity
,
Graylock Press
,
New York
.
19.
Kerr
,
A. D.
, and
Tang
,
S.
,
1967
, “
The Instability of a Rectangular Elastic Solid
,”
Acta Mechanica
,
4
(
1
), pp.
43
63
.
20.
Brunelle
,
E. J.
,
1973
, “
Surface Instability Due to Initial Compressive Stress
,”
Bull. Seismol. Soc. Am.
,
63
(
6-1
), pp.
1885
1893
.
21.
Triantafyllidis
,
N.
,
1983
, “
On the Bifurcation and Postbifurcation Analysis of Elastic-Plastic Solids Under General Prebifurcation Conditions
,”
J. Mech. Phys. Solids
,
31
(
6
), pp.
499
510
.
22.
Jiménez
,
F. L.
, and
Triantafyllidis
,
N.
,
2013
, “
Buckling of Rectangular and Hexagonal Honeycomb Under Combined Axial Compression and Transverse Shear
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3934
3946
.
23.
Triantafyllidis
,
N.
,
1980
, “
Bifurcation Phenomena in Pure Bending
,”
J. Mech. Phys. Solids
,
28
(
3
), pp.
221
245
.
24.
Lee
,
D.
,
Triantafyllidis
,
N.
,
Barber
,
J. R.
, and
Thouless
,
M. D.
,
2008
, “
Surface Instability of an Elastic Half Space With Material Properties Varying With Depth
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
858
868
.
25.
Ogden
,
R.
, and
Fu
,
Y.
,
1996
, “
Nonlinear Stability Analysis of a Pre-Stressed Elastic Half-Space
,”
Contemp. Res. Mech. Math. Mater.
, pp.
164
175
.
26.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Dover Publications, Inc.
,
New York
.
27.
Bažant
,
Z.
,
1971
, “
A Correlation Study of Formulations of Incremental Deformation and Stability of Continuous Bodies
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
919
928
.
28.
Goodier
,
J. N.
, and
Plass
,
H. J.
,
1952
, “
Energy Theorems and Critical Load Approximations in the General Theory of Elastic Stability
,”
Q. Appl. Math.
,
9
(
4
), pp.
286
287
.
29.
Eringen
,
A.
, and
Paslay
,
P. R.
,
1964
, “
Non-Linear Theory of Continuous Media
,”
ASME J. Appl. Mech.
,
31
(
4
), p.
368
.
30.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
,
2005
, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2101
2118
.
31.
Huang
,
R.
,
2005
, “
Kinetic Wrinkling of an Elastic Film on a Viscoelastic Substrate
,”
J. Mech. Phys. Solids
,
53
(
1
), pp.
63
89
.
32.
Chen
,
X.
, and
Hutchinson
,
J. W.
,
2004
, “
Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
597
603
.
33.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A.
,
Hutchinson
,
J.
, and
Whitesides
,
G.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.
34.
Song
,
J.
,
Jiang
,
H.
,
Liu
,
Z. J.
,
Khang
,
D. Y.
,
Huang
,
Y.
,
Rogers
,
J. A.
,
Lu
,
C.
, and
Koh
,
C.
,
2008
, “
Buckling of a Stiff Thin Film on a Compliant Substrate in Large Deformation
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3107
3121
.
35.
Jiang
,
H.
,
Khang
,
D.
,
Fei
,
H.
,
Kim
,
H.
,
Huang
,
Y.
,
Xiao
,
J.
, and
Rogers
,
J. A.
,
2008
, “
Finite Width Effect of Thin-Films Buckling on Compliant Substrate: Experimental and Theoretical Studies
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2585
2598
.
36.
Bo
,
L.
,
Huang
,
S. Q.
, and
Feng
,
X. Q.
,
2010
, “
Buckling and Postbuckling of a Compressed Thin Film Bonded on a Soft Elastic Layer: A Three-Dimensional Analysis
,”
Arch. Appl. Mech.
,
80
(
2
), p.
175
.
37.
Li
,
B.
,
Zhao
,
H.
, and
Feng
,
X.
,
2011
, “
Spontaneous Instability of Soft Thin Films on Curved Substrates Due to van der Waals Interaction
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
610
624
.
38.
Li
,
B.
,
Cao
,
Y.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
39.
Holland
,
M. A.
,
Li
,
B.
,
Feng
,
X. Q.
, and
Kuhl
,
E.
,
2017
, “
Instabilities of Soft Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
98
, pp.
350
365
.
40.
Huang
,
S.
, and
Li
,
B.
,
2008
, “
Three-Dimensional Analysis of Spontaneous Surface Instability and Pattern Formation of Thin Soft Films
,”
J. Appl. Phys.
,
103
(
8
), p.
545
.
41.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
.
42.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T. J. A. M.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
43.
Bertoldi
,
K.
,
Boyce
,
M. C.
,
Deschanel
,
S.
,
Prange
,
S. M.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
.
44.
Biot
,
M. A.
,
1965
,
Mechanics of Incremental Deformations
,
John Wiley and Sons Inc.
,
New York
.
45.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
From Wrinkles to Creases in Elastomers: The Instability and Imperfection-Sensitivity of Wrinkling
,”
Proc. R. Soc. A
,
468
(
2137
), pp.
94
115
.
46.
Dassault-Systèmes
,
2010
,
Abaqus Analysis User's Manual v.6.10
,
Dassault Systèmes Simulia Corp.
,
Johnston, RI
.
You do not currently have access to this content.