Abstract

In this paper, a modified incremental harmonic balance (IHB) method combined with Tikhonov regularization has been proposed to achieve the semi-analytical solution for the periodic nonlinear system. To the best of our knowledge, the convergence of the traditional IHB method is bound up with the iterative initial values of harmonic coefficients, especially near the bifurcation point. Thus, the Tikhonov regularization is introduced into the linear incremental equation to tackle the ill-posed situation in the iteration. To this end, the convergence performance of the traditional IHB method has been improved significantly. Moreover, the proof of convergence of the proposed method also has been given in this paper. Finally, a van der Pol-Duffing oscillator with external excitation and a cubic nonlinear airfoil system with the external store are adopted as numerical examples to illustrate the efficiency and the performance of the present method. The numerical examples show that the results achieved by the proposed method are in excellent agreement with those from the Runge–Kutta method, and the accuracy is not significantly reduced compared with the traditional IHB method. Especially, the results from the proposed method also can converge to the exact solution from the initial values that the traditional IHB method cannot obtain the converged results.

References

1.
Graham
,
J. M. R.
,
Limebeer
,
D. J. N.
, and
Zhao
,
X. W.
,
2011
, “
Aeroelastic Control of Long-Span Suspension Bridges
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041018
.
2.
Gu
,
F.
, and
Ku
,
C. J.
,
2020
, “
Simulation Analysis of a Bridge With a Nonlinear Tuned Mass Damper Using Incremental Harmonic Balance Method
,”
Experimental Vibration Analysis for Civil Structures
,
CRC Press
,
Nanjing, China
, pp.
123
133
.
3.
Liu
,
G.
,
Wang
,
L.
,
Liu
,
J. K.
,
Chen
,
Y. M.
, and
Lu
,
Z. R.
,
2018
, “
Identification of An Airfoil-Store System With Cubic Nonlinearity Via Enhanced Response Sensitivity Approach
,”
AIAA. J.
,
56
(
12
), pp.
4977
4987
.
4.
Liu
,
G.
,
Wang
,
L.
,
Liu
,
J. K.
, and
Lu
,
Z. R.
,
2019
, “
Parameter Identification of Nonlinear Aeroelastic System With Time-Delayed Feedback Control
,”
AIAA. J.
,
58
(
1
), pp.
415
425
.
5.
Gascón-Pérez
,
M.
,
2017
, “
Acoustic Influence on the Vibration of a Cylindrical Membrane Drum Filled With a Compressible Fluid
,”
Int. J. Appl. Mech.
,
9
(
05
), p.
1750072
.
6.
Fang
,
X.
,
Chuang
,
K. C.
,
Jin
,
X. L.
, and
Huang
,
Z. L.
,
2018
, “
Band-Gap Properties of Elastic Metamaterials With Inerter-Based Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071010
.
7.
Hu
,
G. B.
,
Tang
,
L. H.
,
Xu
,
J. W.
,
Lan
,
C. B.
, and
Das
,
R.
,
2019
, “
Metamaterial With Local Resonators Coupled by Negative Stiffness Springs for Enhanced Vibration Suppression
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
071010
.
8.
Wang
,
Y.
,
Wang
,
P. F.
,
Ding
,
K.
,
Li
,
H.
,
Zhang
,
J. G.
,
Liu
,
X.
,
Bai
,
Q.
,
Wang
,
D.
, and
Jin
,
B. Q.
,
2019
, “
Pattern Recognition Using Relevant Vector Machine in Optical Fiber Vibration Sensing System
,”
IEEE Access
,
7
, pp.
5886
5895
.
9.
Chen
,
T. F.
,
Chen
,
G. P.
,
Chen
,
W. T.
,
Hou
,
S.
,
Zheng
,
Y. X.
, and
He
,
H.
,
2021
, “
Application of Decoupled Arma Model to Modal Identification of Linear Time-Varying System Based on the Ica and Assumption of ‘Short-Time Linearly Varying’
,”
J. Sound. Vib.
,
499
, p.
115997
.
10.
Huang
,
J. L.
,
Zhou
,
W. J.
, and
Zhu
,
W. D.
,
2019
, “
Quasi-Periodic Motions of High-Dimensional Nonlinear Models of a Translating Beam With a Stationary Load Subsystem Under Harmonic Boundary Excitation
,”
J. Sound. Vib.
,
462
, p.
114870
.
11.
Wang
,
N.
, and
Davidian
,
M.
,
1996
, “
A Note on Covariate Measurement Error in Nonlinear Mixed Effects Models
,”
Biometrika
,
83
(
4
), pp.
801
812
.
12.
Schoukens
,
J.
,
Pintelon
,
R.
,
Dobrowiecki
,
T.
, and
Rolain
,
Y.
,
2005
, “
Identification of Linear Systems with Nonlinear Distortions
,”
Automatica
,
41
(
3
), pp.
491
504
.
13.
Nayfeh
,
A. H.
1973
.
Perturbation Methods
,
John Wiley & Sons.
14.
Lyapunov
,
A. M.
,
1992
, “
The General Problem of the Stability of Motion
,”
Int. J. Control.
,
55
(
3
), pp.
531
534
.
15.
Dowell
,
E.
,
2013
, “
Some Recent Advances in Nonlinear Aeroelasticity: Fluid-Structure Interaction in the 21st Century
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th
,
Orlando, FL
,
ARC Press
, p.
3137
.
16.
Liu
,
G.
,
Wang
,
L.
,
Luo
,
W. L.
,
Liu
,
J. K.
, and
Lu
,
Z. R.
,
2019
, “
Parameter Identification of Fractional Order System Using Enhanced Response Sensitivity Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
67
, pp.
492
505
.
17.
Chen
,
S. H.
,
2007
,
Quantitative Analysis Method of Strongly Nonlinear Vibration System
,
China Science Publishing & Media Ltd
.
18.
Jena
,
R. M.
,
Chakraverty
,
S.
, and
Jena
,
S. K.
,
2019
, “
Dynamic Response Analysis of Fractionally Damped Beams Subjected to External Loads Using Homotopy Analysis Method
,”
J. Appl. Comput. Mech.
,
5
(
2
), pp.
355
366
.
19.
Prince
,
P. J.
, and
Dormand
,
J. R.
,
1981
, “
High Order Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
7
(
1
), pp.
67
75
.
20.
Cui
,
C. C.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2015
, “
Simulating Nonlinear Aeroelastic Responses of An Airfoil With Freeplay Based on Precise Integration Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
933
942
.
21.
Liu
,
G.
,
Lv
,
Z. R.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2018
, “
Quasi-periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
100
, pp.
10
19
.
22.
Shen
,
Y. J.
,
Wen
,
S. F.
,
Li
,
X. H.
,
Yang
,
S. P.
, and
Xing
,
H. J.
,
2016
, “
Dynamical Analysis of Fractional-Order Nonlinear Oscillator by Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1457
1467
.
23.
Marinca
,
V.
, and
Herişanu
,
N.
,
2010
, “
Determination of Periodic Solutions for the Motion of a Particle on a Rotating Parabola by Means of the Optimal Homotopy Asymptotic Method
,”
J. Sound. Vib.
,
329
(
9
), pp.
1450
1459
.
24.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1991
, “
A Modified Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
26
(
3-4
), pp.
367
378
.
25.
Yuste
,
S. B.
, and
Bejarano
,
J. D.
,
1990
, “
Improvement of a Krylov–Bogoliubov Method That Uses Jacobi Elliptic Functions
,”
J. Sound. Vib.
,
139
(
1
), pp.
151
163
.
26.
Li
,
S. J.
,
Niu
,
J. C.
, and
Li
,
X. H.
,
2018
, “
Primary Resonance of Fractional-Order Duffing-van Der Pol Oscillator by Harmonic Balance Method
,”
Chinese Phys. B
,
27
(
12
), p.
120502
.
27.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer
.
28.
Liao
,
S. J.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
New York
.
29.
Liu
,
G.
,
Lu
,
Z. R.
,
Wang
,
L.
, and
Liu
,
J. K.
,
2021
, “
A New Semi-Analytical Technique for Nonlinear Systems Based on Response Sensitivity Analysis
,”
Nonlinear Dyn.
,
103
(
2
), pp.
1529
1551
.
30.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
J. Appl. Mech.
,
48
(
4
), pp.
959
964
.
31.
Urabe
,
M.
, and
Reiter
,
A.
,
1966
, “
Numerical Computation of Nonlinear Forced Oscillations by Galerkin’s Procedure
,”
J. Math. Anal. Appl.
,
14
(
1
), pp.
107
140
.
32.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
J. Appl. Mech.
,
52
(
4
), pp.
958
964
.
33.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1986
, “
Incremental Hamilton’s Principle With Multiple Time Scales for Nonlinear Aperiodic Vibrations of Shells
,”
J. Appl. Mech.
,
53
(
2
), pp.
465
466
.
34.
Cheung
,
Y.
,
Chen
,
S.
, and
Lau
,
S.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound. Vib.
,
140
(
2
), pp.
273
286
.
35.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021010
.
36.
Liu
,
J. K.
,
Chen
,
F. X.
, and
Chen
,
Y. M.
,
2012
, “
Bifurcation Analysis of Aeroelastic Systems With Hysteresis by Incremental Harmonic Balance Method
,”
Appl. Math. Comput.
,
219
(
5
), pp.
2398
2411
.
37.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061011
.
38.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2009
, “
Improving Convergence of Incremental Harmonic Balance Method Using Homotopy Analysis Method
,”
Acta. Mech. Sin.
,
25
(
5
), pp.
707
712
.
39.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden’s Method
,”
Nonlinear Dyn.
,
81
(
1
), pp.
981
989
.
40.
Zhang
,
T.
,
Lu
,
Z. R.
,
Liu
,
J. K.
, and
Liu
,
G.
,
2021
, “
Parameter Identification of Nonlinear Systems With Time-Delay From Time-Domain Data
,”
Nonlinear Dyn.
,
104
(
4
), pp.
4045
4061
.
41.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.
42.
Calvetti
,
D.
, and
Reichel
,
L.
,
2003
, “
Tikhonov Regularization of Large Linear Problems
,”
BIT Numer. Math.
,
43
(
2
), pp.
263
283
.
43.
Jing
,
Z. J.
,
Yang
,
Z. Y.
, and
Jiang
,
T.
,
2006
, “
Complex Dynamics in Duffing-van Der Pol Equation
,”
Chaos, Solitons & Fractals
,
27
(
3
), pp.
722
747
.
44.
Shukla
,
A. K.
,
Ramamohan
,
T. R.
, and
Srinivas
,
S.
,
2014
, “
A New Analytical Approach for Limit Cycles and Quasi-Periodic Solutions of Nonlinear Oscillators: The Example of the Forced Van Der Pol Duffing Oscillator
,”
Phys. Scr.
,
89
(
7
), p.
075202
.
45.
Vasudevan
,
V.
, and
Ramakrishna
,
M.
,
2017
, “
A Hierarchical Singular Value Decomposition Algorithm for Low Rank Matrices
,”
arXiv preprint
.
You do not currently have access to this content.