Abstract

The paper presents an enhancement in Refined Zigzag Theory (RZT) for the analysis of multilayered composite plates. In standard RZT, the zigzag functions cannot predict the coupling effect of in-plane displacements for anisotropic multilayered plates, such as angle-ply laminates. From a computational point of view, this undesirable effect leads to a singular stiffness matrix. In this work, the local kinematic field of RZT is enhanced with the other two zigzag functions that allow the coupling effect. In order to assess the accuracy of these new zigzag functions for RZT, results obtained from bending of angle-ply laminated plates are compared with the three-dimensional exact elasticity solutions and other plate models used in the open literature. The numerical results highlight that the enhanced zigzag functions extend the range of applicability of RZT to the study of general angle-ply multilayered structures, maintaining the same seven kinematic unknowns of standard RZT.

References

1.
Abrate
,
S.
, and
Di Sciuva
,
M.
,
2017
, “
Equivalent Single Layer Theories for Composite and Sandwich Structures: A Review
,”
Compos. Struct.
,
179
, pp.
482
494
.
2.
Abrate
,
S.
, and
Di Sciuva
,
M.
,
2018
, “Multilayer Models for Composite and Sandwich Structures,”
Comprehensive Composite Materials II
,
P. W. R.
Beaumont
, and
C. H.
Zweben
, eds.,
Elsevier
,
New York
, pp.
399
425
.
3.
Whitney
,
J. M.
,
1969
, “
The Effect of Transverse Shear Deformation on the Bending of Laminated Plates
,”
J. Compos. Mater.
,
3
(
3
), pp.
534
547
.
4.
Murakami
,
H.
,
1986
, “
Laminated Composite Plate Theory With Improved In-Plane Responses
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
661
666
.
5.
Di Sciuva
,
M.
,
1985
, “
Development of an Anisotropic, Multilayered, Shear-Deformable Rectangular Plate Element
,”
Comput. Struct.
,
21
(
4
), pp.
789
796
.
6.
Cho
,
M.
, and
Parmerter
,
R. R.
,
1992
, “
An Efficient Higher-Order Plate Theory for Laminated Composites
,”
Compos. Struct.
,
20
(
2
), pp.
113
123
.
7.
Loredo
,
A.
, and
Castel
,
A.
,
2014
, “
Two Multilayered Plate Models with Transverse Shear Warping Functions Issued From Three Dimensional Elasticity Equations
,”
Compos. Struct.
,
117
, pp.
382
395
.
8.
Loredo
,
A.
,
D’Ottavio
,
M.
,
Vidal
,
P.
, and
Polit
,
O.
,
2019
, “
A Family of Higher-Order Single Layer Plate Models Meeting Cz0-Requirements for Arbitrary Laminates
,”
Compos. Struct.
,
225
, p.
14
.
9.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2009
, “
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
,”
NASATP-2009-215561
, pp.
1
53
.
10.
Tessler
,
A.
,
Di Sciuva
,
M.
, and
Gherlone
,
M.
,
2011
, “
A Homogeneous Limit Methodology and Refinements of Computationally Efficient Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates
,”
Numer. Methods Partial Differ. Eq.
,
27
(
1
), pp.
208
229
.
11.
Gherlone
,
M.
,
2013
, “
On the Use of Zigzag Functions in Equivalent Single Layer Theories for Laminated Composite and Sandwich Beams: A Comparative Study and Some Observations on External Weak Layers
,”
ASME J. Appl. Mech.
,
80
(
6
), p. 061004.
12.
Iurlaro
,
L.
,
Gherlone
,
M.
, and
Di Sciuva
,
M.
,
2015
, “
The (3,2)-Mixed Refined Zigzag Theory for Generally Laminated Beams: Theoretical Development and C0 Finite Element Formulation
,”
Int. J. Solids Struct.
,
73–74
, pp.
1
19
.
13.
Kreja
,
I.
, and
Sabik
,
A.
,
2019
, “
Equivalent Single-Layer Models in Deformation Analysis of Laminated Multilayered Plates
,”
Acta Mech.
,
230
(
8
), pp.
2827
2851
.
14.
Di Sciuva
,
M.
,
1992
, “
Multilayered Anisotropic Plate Models With Continuous Interlaminar Stresses
,”
Compos. Struct.
,
22
(
3
), pp.
149
167
.
15.
Savoia
,
M.
, and
Reddy
,
J. N.
,
1992
, “
A Variational Approach to Three-Dimensional Elasticity Solutions of Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S166
S175
.
16.
Pagano
,
N. J.
,
1970
, “
Influence of Shear Coupling in Cylindrical Bending of Anisotropic Laminates
,”
J. Compos. Mater.
,
4
(
3
), pp.
330
343
.
You do not currently have access to this content.