Abstract

Chirality is a widespread feature existing in nature and can be critical in the proper functions of some organisms. In our previous work, a rotational clutch-filament model for a radial fiber was built to reveal the critical role of α-actinin in the cellular chiral swirling. Here, we assume two mobility modes of α-actinin along actin filaments. In Mode A, where α-actinin concomitantly moves together with a growing filament, our model analysis suggests that cells cannot swirl clockwise; in Mode B, where α-actinin is fixed along the axial direction of the radial fiber instead, our model analysis suggests that both counter-clockwise and clockwise chiral swirling occur, consistent with experiments. Thus, our studies suggest that how α-actinin moves along growing filaments within a radial fiber would strongly affect cellular swirling. In addition, the previous rotational clutch-model has been improved by considering the elastic response of a radial fiber to a torque and distributed biomechanical properties of varied cell phenotype.

References

1.
Zhu
,
H. J.
,
Shimada
,
T.
,
Wang
,
J. S.
,
Kitamura
,
T.
, and
Feng
,
X. Q.
,
2016
, “
Mechanics of Fibrous Biological Materials With Hierarchical Chirality
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
7
. 10.1115/1.4034225
2.
Harris
,
E. S.
,
Li
,
F.
, and
Higgs
,
H. N.
,
2004
, “
The Mouse Formin, FRL Alpha, Slows Actin Filament Barbed end Elongation, Competes With Capping Protein, Accelerates Polymerization From Monomers, and Severs Filaments
,”
J. Biol. Chem.
,
279
(
19
), pp.
20076
20087
. 10.1074/jbc.M312718200
3.
Moseley
,
J. B.
,
Sagot
,
I.
,
Manning
,
A. L.
,
Xu
,
Y. W.
,
Eck
,
J.
,
Pellman
,
D.
, and
Goode
,
B. L.
,
2004
, “
A Conserved Mechanism for Bni1-and mDia1-Induced Actin Assembly and Dual Regulation of Bni1 by Bud6 and Profilin
,”
Mol. Biol. Cell
,
15
(
2
), pp.
896
907
. 10.1091/mbc.e03-08-0621
4.
Xu
,
Y. W.
,
Moseley
,
J. B.
,
Sagot
,
I.
,
Poy
,
F.
,
Pellman
,
D.
,
Goode
,
B. L.
, and
Eck
,
M. J.
,
2004
, “
Crystal Structures of a Formin Homology-2 Domain Reveal a Tethered Dimer Architecture
,”
Cell
,
116
(
5
), pp.
711
723
. 10.1016/S0092-8674(04)00210-7
5.
Mizuno
,
H.
,
Higashida
,
C.
,
Yuan
,
Y.
,
Ishizaki
,
T.
,
Narumiya
,
S.
, and
Watanabe
,
N.
,
2011
, “
Rotational Movement of the Formin mDia1 Along the Double Helical Strand of an Actin Filament
,”
Science
,
331
(
6013
), pp.
80
83
. 10.1126/science.1197692
6.
Ali
,
M. Y.
,
Uemura
,
S.
,
Adachi
,
K.
,
Itoh
,
H.
,
Kinosita
,
K.
, and
Ishiwata
,
S.
,
2002
, “
Myosin V is a Left-Handed Spiral Motor on the Right-Handed Actin Helix
,”
Nat. Struct. Biol.
,
9
(
6
), pp.
464
467
. 10.1038/nsb803
7.
Komori
,
Y.
,
Iwane
,
A. H.
, and
Yanagida
,
T.
,
2007
, “
Myosin-V Makes Two Brownian 90 Degrees Rotations Per 36-nm Step
,”
Nat. Struct. Mol. Biol.
,
14
(
10
), pp.
968
973
. 10.1038/nsmb1298
8.
Galaburda
,
A. M.
,
Lemay
,
M.
,
Kemper
,
T. L.
, and
Geschwind
,
N.
,
1978
, “
Right-Left Asymmetries in Brain
,”
Science
,
199
(
4331
), pp.
852
856
. 10.1126/science.341314
9.
Toga
,
A. W.
, and
Thompson
,
P. M.
,
2003
, “
Mapping Brain Asymmetry
,”
Nat. Rev. Neurosci.
,
4
(
1
), pp.
37
48
. 10.1038/nrn1009
10.
Rogers
,
L. J.
,
2017
, “
A Matter of Degree: Strength of Brain Asymmetry and Behaviour
,”
Symmetry
,
9
(
4
), pp.
1
14
.
11.
Rahman
,
T.
,
Zhang
,
H. K.
,
Fan
,
J.
, and
Wan
,
L. Q.
,
2020
, “
Cell Chirality in Cardiovascular Development and Disease
,”
APL Bioeng.
,
4
(
3
), p.
9
. 10.1063/5.0014424
12.
Desgrange
,
A.
,
Le Garrec
,
J. F.
, and
Meilhac
,
S. M.
,
2018
, “
Left-Right Asymmetry in Heart Development and Disease: Forming the Right Loop
,”
Development
,
145
(
22
), p.
19
. 10.1242/dev.162776
13.
Tamada
,
A.
,
Kawase
,
S.
,
Murakami
,
F.
, and
Kamiguchi
,
H.
,
2010
, “
Autonomous Right-Screw Rotation of Growth Cone Filopodia Drives Neurite Turning
,”
J. Cell Biol.
,
188
(
3
), pp.
429
441
. 10.1083/jcb.200906043
14.
Xu
,
J. S.
,
Van Keymeulen
,
A.
,
Wakida
,
N. M.
,
Carlton
,
P.
,
Berns
,
M. W.
, and
Bourne
,
H. R.
,
2007
, “
Polarity Reveals Intrinsic Cell Chirality
,”
Proc. Natl. Acad. Sci.
,
104
(
22
), pp.
9296
9300
. 10.1073/pnas.0703153104
15.
Chen
,
T. H.
,
Hsu
,
J. J.
,
Zhao
,
X.
,
Guo
,
C. Y.
,
Wong
,
M. N.
,
Huang
,
Y.
,
Li
,
Z. W.
,
Garfinkel
,
A.
,
Ho
,
C. M.
,
Tintut
,
Y.
, and
Demer
,
L. L.
,
2012
, “
Left-Right Symmetry Breaking in Tissue Morphogenesis Via Cytoskeletal Mechanics
,”
Circ. Res.
,
110
(
4
), pp.
551
559
. 10.1161/CIRCRESAHA.111.255927
16.
Wan
,
L. Q.
,
Ronaldson
,
K.
,
Park
,
M.
,
Taylor
,
G.
,
Zhang
,
Y.
,
Gimble
,
J. M.
, and
Vunjak-Novakovic
,
G.
,
2011
, “
Micropatterned Mammalian Cells Exhibit Phenotype-Specific Left-Right Asymmetry
,”
Proc. Natl. Acad. Sci.
,
108
(
30
), pp.
12295
12300
. 10.1073/pnas.1103834108
17.
Tee
,
Y. H.
,
Shemesh
,
T.
,
Thiagarajan
,
V.
,
Hariadi
,
R. F.
,
Anderson
,
K. L.
,
Page
,
C.
,
Volkmann
,
N.
,
Hanein
,
D.
,
Sivaramakrishnan
,
S.
,
Kozlov
,
M. M.
, and
Bershadsky
,
A. D.
,
2015
, “
Cellular Chirality Arising From the Self-Organization of the Actin Cytoskeleton
,”
Nat. Cell Biol.
,
17
(
4
), pp.
445
+.
10.1038/ncb3137
18.
Yamanaka
,
H.
, and
Kondo
,
S.
,
2015
, “
Rotating Pigment Cells Exhibit an Intrinsic Chirality
,”
Genes Cells
,
20
(
1
), pp.
29
35
. 10.1111/gtc.12194
19.
Li
,
X.
, and
Chen
,
B.
,
2020
, “
Switching Cellular Swirling Upon One-Way Torsional Drive
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071002
. 10.1115/1.4046782
20.
Paul
,
A. S.
, and
Pollard
,
T. D.
,
2009
, “
Review of the Mechanism of Processive Actin Filament Elongation by Formins
,”
Cell Motil. Cytoskeleton
,
66
(
8
), pp.
606
617
. 10.1002/cm.20379
21.
Ma
,
R.
, and
Berro
,
J.
,
2018
, “
Structural Organization and Energy Storage in Crosslinked Actin Assemblies
,”
PLoS Comput. Biol.
,
14
(
5
), p.
25
. 10.1371/journal.pcbi.1006150
22.
Tojkander
,
S.
,
Gateva
,
G.
,
Schevzov
,
G.
,
Hotulainen
,
P.
,
Naumanen
,
P.
,
Martin
,
C.
,
Gunning
,
P. W.
, and
Lappalainen
,
P.
,
2011
, “
A Molecular Pathway for Myosin II Recruitment to Stress Fibers
,”
Curr. Biol.
,
21
(
7
), pp.
539
550
. 10.1016/j.cub.2011.03.007
23.
Burnette
,
D. T.
,
Manley
,
S.
,
Sengupta
,
P.
,
Sougrat
,
R.
,
Davidson
,
M. W.
,
Kachar
,
B.
, and
Lippincott-Schwartz
,
J.
,
2011
, “
A Role for Actin Arcs in the Leading-Edge Advance of Migrating Cells
,”
Nat. Cell Biol.
,
13
(
4
), pp.
371
U388
. 10.1038/ncb2205
24.
Xu
,
J. Y.
,
Wirtz
,
D.
, and
Pollard
,
T. D.
,
1998
, “
Dynamic Cross-Linking by Alpha-Actinin Determines the Mechanical Properties of Actin Filament Networks
,”
J. Biol. Chem.
,
273
(
16
), pp.
9570
9576
. 10.1074/jbc.273.16.9570
25.
Dong
,
C.
, and
Chen
,
B.
,
2016
, “
Coupling of Bond Breaking With State Transition Leads to High Apparent Detachment Rates of a Single Myosin
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051011
. 10.1115/1.4032860
26.
Bell
,
G. I.
,
1978
, “
Models for Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
. 10.1126/science.347575
27.
Grazi
,
E.
,
Trombetta
,
G.
, and
Guidoboni
,
M.
,
1991
, “
Binding of Alpha-Actinin to F-Actin or to Tropomyosin F-Actin is a Function of Both Alpha-Actinin and gel Structure
,”
J. Muscle Res. Cell Motil.
,
12
(
6
), pp.
579
584
. 10.1007/BF01738446
28.
Kabsch
,
W.
,
Mannherz
,
H. G.
,
Suck
,
D.
,
Pai
,
E. F.
, and
Holmes
,
K. C.
,
1990
, “
Atomic-Structure of the Actin-Dnase-I Complex
,”
Nature
,
347
(
6288
), pp.
37
44
. 10.1038/347037a0
29.
Holmes
,
K. C.
,
Popp
,
D.
,
Gebhard
,
W.
, and
Kabsch
,
W.
,
1990
, “
Atomic Model of the Actin Filament
,”
Nature
,
347
(
6288
), pp.
44
49
. 10.1038/347044a0
30.
Gillespie
,
D. T.
,
1976
, “
General Method for Numerically Simulating Stochastic Time Evolution of Coupled Chemical-Reactions
,”
J. Comput. Phys.
,
22
(
4
), pp.
403
434
. 10.1016/0021-9991(76)90041-3
31.
Gillespie
,
D. T.
,
1977
, “
Exact Stochastic Simulation of Coupled Chemical-Reations
,”
J. Phys. Chem.
,
81
(
25
), pp.
2340
2361
. 10.1021/j100540a008
32.
Sjöblom
,
B.
,
Salmazo
,
A.
, and
Djinović-Carugo
,
K.
,
2008
, “
Alpha-Actinin Structure and Regulation
,”
Cell. Mol. Life Sci.
,
65
(
17
), pp.
2688
2701
. 10.1007/s00018-008-8080-8
33.
Ylänne
,
J.
,
Scheffzek
,
K.
,
Young
,
P.
, and
Saraste
,
M.
,
2001
, “
Crystal Structure of the Alpha-Actinin Rod Reveals an Extensive Torsional Twist
,”
Structure
,
9
(
7
), pp.
597
604
. 10.1016/S0969-2126(01)00619-0
34.
Golji
,
J.
,
Collins
,
R.
, and
Mofrad
,
M. R. K.
,
2009
, “
Molecular Mechanics of the Alpha-Actinin rod Domain: Bending, Torsional, and Extensional Behavior
,”
PLoS Comput. Biol.
,
5
(
5
):
e1000389
. 10.1371/journal.pcbi.1000389
35.
Staiger
,
C. J.
,
Sheahan
,
M. B.
,
Khurana
,
P.
,
Wang
,
X.
,
McCurdy
,
D. W.
, and
Blanchoin
,
L.
,
2009
, “
Actin Filament Dynamics are Dominated by Rapid Growth and Severing Activity in the Arabidopsis Cortical Array
,”
J. Cell Biol.
,
184
(
2
), pp.
269
280
. 10.1083/jcb.200806185
36.
Chen
,
X.
,
Li
,
M. X.
,
Liu
,
S. B.
,
Liu
,
F. S.
,
Genin
,
G. M.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2019
, “
Translation of a Coated Rigid Spherical Inclusion in an Elastic Matrix: Exact Solution, and Implications for Mechanobiology
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
0510021
. 10.1115/1.4042575
37.
Tancogne-Dejean
,
T.
,
Karathanasopoulos
,
N.
, and
Mohr
,
D.
,
2019
, “
Stiffness and Strength of Hexachiral Honeycomb-Like Metamaterials
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111010
. 10.1115/1.4044494
38.
Reasa
,
D. R.
, and
Lakes
,
R. S.
,
2019
, “
Cosserat Effects in Achiral and Chiral Cubic Lattices
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111009
. 10.1115/1.4044047
You do not currently have access to this content.