Abstract

We conducted large-scale molecular dynamics (MD) simulations of shock wave propagation and spallation in amorphous polyurethane and polyurea. First, we computed the shock Hugoniot of the polymers using the multiscale shock technique and compared them with available experimental data to establish the upper limit of the shock pressure that can be accurately modeled using a non-reactive interatomic force field. Subsequently, we simulated shock wave propagation in the polymers, varying the shock particle velocity from 0.125 km/s to 2 km/s. A remarkable similarity in the shock behavior of polyurethane and polyurea was observed. The spall strength of each sample was computed by two methods: (a) the indirect method (based on the free surface velocity history)—accessible in experiments and (b) a direct method (based on the atomic stresses in the region of spallation)—accessible only through MD. The results reveal that the tensile strength computed from the indirect method is consistently smaller than the value obtained from the direct method. Moreover, the strength computed from the indirect method shows a noticeable agreement with the fracture nucleation stress. Our results provide novel molecular-level insights into the spallation mechanisms of amorphous polymers, which could facilitate the design of polymers for structural barrier applications.

References

1.
Amini
,
M. R.
,
Isaacs
,
J.
, and
Nemat-Nasser
,
S.
,
2010
, “
Investigation of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure-Pulse Experiments
,”
Mech. Mater.
,
42
(
6
), pp.
628
639
.
2.
Amini
,
M. R.
,
Isaacs
,
J. B.
, and
Nemat-Nasser
,
S.
,
2010
, “
Experimental Investigation of Response of Monolithic and Bilayer Plates to Impulsive Loads
,”
Int. J. Impact Eng.
,
37
(
1
), pp.
82
89
.
3.
Xue
,
L.
,
Mock
,
W.
, and
Belytschko
,
T.
,
2010
, “
Penetration of DH-36 Steel Plates With and Without Polyurea Coating
,”
Mech. Mater.
,
42
(
11
), pp.
981
1003
.
4.
Mohotti
,
D.
,
Ngo
,
T.
,
Mendis
,
P.
, and
Raman
,
S. N.
,
2013
, “
Polyurea Coated Composite Aluminium Plates Subjected to High Velocity Projectile Impact
,”
Mater. Des.
,
52
, pp.
1
16
.
5.
Jiang
,
Y.
,
Zhang
,
B.
,
Wei
,
J.
, and
Wang
,
W.
,
2019
, “
Study on the Impact Resistance of Polyurea-Steel Composite Plates to Low Velocity Impact
,”
Int. J. Impact Eng.
,
133
, p.
103357
.
6.
Iqbal
,
N.
,
Tripathi
,
M.
,
Parthasarathy
,
S.
,
Kumar
,
D.
, and
Roy
,
P. K.
,
2016
, “
Polyurea Coatings for Enhanced Blast-Mitigation: A Review
,”
RSC Adv.
,
6
(
111
), pp.
109706
109717
.
7.
Grujicic
,
M.
,
Bell
,
W. C.
,
Pandurangan
,
B.
, and
He
,
T.
,
2010
, “
Blast-Wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension-Pad Material
,”
Mater. Des.
,
31
(
9
), pp.
4050
4065
.
8.
Haris
,
A.
,
Lee
,
H. P.
, and
Tan
,
V. B. C.
,
2018
, “
An Experimental Study on Shock Wave Mitigation Capability of Polyurea and Shear Thickening Fluid Based Suspension Pads
,”
Def. Technol.
,
14
(
1
), pp.
12
18
.
9.
Wu
,
Y.-C. M.
,
Hu
,
W.
,
Sun
,
Y.
,
Veysset
,
D.
,
Kooi
,
S. E.
,
Nelson
,
K. A.
,
Swager
,
T. M.
, and
Hsieh
,
A. J.
,
2019
, “
Unraveling the High Strain-Rate Dynamic Stiffening in Select Model Polyurethanes—The Role of Intermolecular Hydrogen Bonding
,”
Polymer
,
168
, pp.
218
227
.
10.
Sun
,
Y.
,
Wu
,
Y.-C. M.
,
Veysset
,
D.
,
Kooi
,
S. E.
,
Hu
,
W.
,
Swager
,
T. M.
,
Nelson
,
K. A.
, and
Hsieh
,
A. J.
,
2019
, “
Molecular Dependencies of Dynamic Stiffening and Strengthening Through High Strain Rate Microparticle Impact of Polyurethane and Polyurea Elastomers
,”
Appl. Phys. Lett.
,
115
(
9
), p.
093701
.
11.
Hsieh
,
A. J.
,
Mason Wu
,
Y.-C.
,
Hu
,
W.
,
Mikhail
,
J. P.
,
Veysset
,
D.
,
Kooi
,
S. E.
,
Nelson
,
K. A.
,
Rutledge
,
G. C.
, and
Swager
,
T. M.
,
2021
, “
Bottom-Up Design Toward Dynamically Robust Polyurethane Elastomers
,”
Polymer
,
218
, p.
123518
.
12.
Sun
,
Y.
,
Kooi
,
S. E.
,
Nelson
,
K. A.
,
Hsieh
,
A. J.
, and
Veysset
,
D.
,
2020
, “
Impact-induced Glass-to-Rubber Transition of Polyurea Under High-Velocity Temperature-Controlled Microparticle Impact
,”
Appl. Phys. Lett.
,
117
(
2
), p.
021905
.
13.
Cai
,
J.
, and
Thevamaran
,
R.
,
2020
, “
Superior Energy Dissipation by Ultrathin Semicrystalline Polymer Films Under Supersonic Microprojectile Impacts
,”
Nano Lett.
,
20
(
8
), pp.
5632
5638
.
14.
Eastmond
,
T.
,
Hu
,
J.
,
Alizadeh
,
V.
,
Hrubiak
,
R.
,
Oswald
,
J.
,
Amirkhizi
,
A.
, and
Peralta
,
P.
,
2021
, “
Probing High-Pressure Structural Evolution in Polyurea With in Situ Energy-Dispersive X-Ray Diffraction and Molecular Dynamics Simulations
,”
Macromolecules
,
54
(
2
), pp.
597
608
.
15.
Aguiar
,
R.
,
Miller
,
R. E.
, and
Petel
,
O. E.
,
2020
, “
Synthesis and Characterization of Partially Silane-Terminated Polyurethanes Reinforced With Acid-Treated Halloysite Nanotubes for Transparent Armour Systems
,”
Sci. Rep.
,
10
(
1
), p.
13805
.
16.
Lebar
,
A.
,
Aguiar
,
R.
,
Oddy
,
A.
, and
Petel
,
O. E.
,
2021
, “
Particle Surface Effects on the Spall Strength of Particle-Reinforced Polymer Matrix Composites
,”
Int. J. Impact Eng.
,
150
, p.
103801
.
17.
Nellis
,
W. J.
,
Ree
,
F. H.
,
Trainor
,
R. J.
,
Mitchell
,
A. C.
, and
Boslough
,
M. B.
,
1984
, “
Equation of State and Optical Luminosity of Benzene, Polybutene, and Polyethylene Shocked to 210 GPa (2.1 Mbar)
,”
J. Chem. Phys.
,
80
(
6
), pp.
2789
2799
.
18.
Carter
,
W. J.
, and
Marsh
,
S. P.
,
1995
, “
Hugoniot Equation of State of Polymers
,”
Los Alamos National Laboratory
.
19.
Millett
,
J. C. F.
, and
Bourne
,
N. K.
,
2004
, “
The Shock Induced Equation of State of Three Simple Polymers
,”
J. Phys. Appl. Phys.
,
37
(
20
), pp.
2901
2907
.
20.
Hazell
,
P. J.
,
Appleby-Thomas
,
G. J.
,
Trinquant
,
X.
, and
Chapman
,
D. J.
,
2011
, “
In-Fiber Shock Propagation in Dyneema®
,”
J. Appl. Phys.
,
110
(
4
), p.
043504
.
21.
Mattsson
,
T. R.
,
Lane
,
J. M. D.
,
Cochrane
,
K. R.
,
Desjarlais
,
M. P.
,
Thompson
,
A. P.
,
Pierce
,
F.
, and
Grest
,
G. S.
,
2010
, “
First-Principles and Classical Molecular Dynamics Simulation of Shocked Polymers
,”
Phys. Rev. B
,
81
(
5
), p.
054103
.
22.
Minakov
,
D. V.
,
Levashov
,
P. R.
,
Khishchenko
,
K. V.
, and
Fortov
,
V. E.
,
2014
, “
Quantum Molecular Dynamics Simulation of Shock-Wave Experiments in Aluminum
,”
J. Appl. Phys.
,
115
(
122
), p.
223512
.
23.
Reed
,
E. J.
,
Fried
,
L. E.
, and
Joannopoulos
,
J. D.
,
2003
, “
A Method for Tractable Dynamical Studies of Single and Double Shock Compression
,”
Phys. Rev. Lett.
,
90
(
23
), p.
235503
.
24.
DeVries
,
M.
,
Subhash
,
G.
, and
Awasthi
,
A.
,
2020
, “
Shocked Ceramics Melt: An Atomistic Analysis of Thermodynamic Behavior of Boron Carbide
,”
Phys. Rev. B
,
101
(
14
), p.
144107
.
25.
Li
,
W.
,
Hahn
,
E. N.
,
Yao
,
X.
,
Germann
,
T. C.
,
Feng
,
B.
, and
Zhang
,
X.
,
2020
, “
On the Grain Size Dependence of Shock Responses in Nanocrystalline SiC Ceramics at High Strain Rates
,”
Acta Mater.
,
200
, pp.
632
651
.
26.
Li
,
W.
,
Hahn
,
E. N.
,
Yao
,
X.
,
Germann
,
T. C.
, and
Zhang
,
X.
,
2019
, “
Shock Induced Damage and Fracture in SiC at Elevated Temperature and High Strain Rate
,”
Acta Mater.
,
167
, pp.
51
70
.
27.
Li
,
W. H.
,
Yao
,
X. H.
,
Branicio
,
P. S.
,
Zhang
,
X. Q.
, and
Zhang
,
N. B.
,
2017
, “
Shock-Induced Spall in Single and Nanocrystalline SiC
,”
Acta Mater.
,
140
, pp.
274
289
.
28.
Chen
,
J.
, and
Fensin
,
S. J.
,
2020
, “
Associating Damage Nucleation and Distribution With Grain Boundary Characteristics in Ta
,”
Scr. Mater.
,
187
, pp.
329
334
.
29.
Wang
,
J.
,
Wu
,
F.
,
Wang
,
P.
,
He
,
A.
, and
Wu
,
H.
,
2020
, “
Double-Shock-Induced Spall and Recompression Processes in Copper
,”
J. Appl. Phys.
,
127
(
13
), p.
135903
.
30.
He
,
L.
,
Wang
,
F.
,
Zeng
,
X.
,
Yang
,
X.
, and
Qi
,
Z.
,
2020
, “
Atomic Insights Into Shock-Induced Spallation of Single-Crystal Aluminum Through Molecular Dynamics Modeling
,”
Mech. Mater.
,
143
, p.
103343
.
31.
Shao
,
J.-L.
,
Wang
,
P.
,
He
,
A.-M.
,
Zhang
,
R.
, and
Qin
,
C.-S.
,
2013
, “
Spall Strength of Aluminium Single Crystals Under High Strain Rates: Molecular Dynamics Study
,”
J. Appl. Phys.
,
114
(
17
), p.
173501
.
32.
Xie
,
F.
,
Lu
,
Z.
,
Yang
,
Z.
,
Hu
,
W.
, and
Yuan
,
Z.
,
2016
, “
Mechanical Behaviors and Molecular Deformation Mechanisms of Polymers Under High Speed Shock Compression: A Molecular Dynamics Simulation Study
,”
Polymer
,
98
, pp.
294
304
.
33.
O’Connor
,
T. C.
,
Elder
,
R. M.
,
Sliozberg
,
Y. R.
,
Sirk
,
T. W.
,
Andzelm
,
J. W.
, and
Robbins
,
M. O.
,
2018
, “
Molecular Origins of Anisotropic Shock Propagation in Crystalline and Amorphous Polyethylene
,”
Phys. Rev. Mater.
,
2
(
3
), p.
035601
.
34.
Elder
,
R. M.
,
O’Connor
,
T. C.
,
Chantawansri
,
T. L.
,
Sliozberg
,
Y. R.
,
Sirk
,
T. W.
,
Yeh
,
I.-C.
,
Robbins
,
M. O.
, and
Andzelm
,
J. W.
,
2017
, “
Shock-Wave Propagation and Reflection in Semicrystalline Polyethylene: A Molecular-Level Investigation
,”
Phys. Rev. Mater.
,
1
(
4
), p.
043606
.
35.
Grujicic
,
M.
,
Yavari
,
R.
,
Snipes
,
J. S.
,
Ramaswami
,
S.
,
Runt
,
J.
,
Tarter
,
J.
, and
Dillon
,
G.
,
2012
, “
Molecular-Level Computational Investigation of Shock-Wave Mitigation Capability of Polyurea
,”
J. Mater. Sci.
,
47
(
23
), pp.
8197
8215
.
36.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Bell
,
W. C.
,
Cheeseman
,
B. A.
,
Yen
,
C.-F.
, and
Randow
,
C. L.
,
2011
, “
Molecular-Level Simulations of Shock Generation and Propagation in Polyurea
,”
Mater. Sci. Eng., A
,
528
(
10–11
), pp.
3799
3808
.
37.
Manav
,
M.
, and
Ortiz
,
M.
,
2021
, “
Molecular Dynamics Study of the Shock Response of Polyurea
,”
Polymer
,
212
, p.
123109
.
38.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
39.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
40.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
,
1994
, “
An Ab Initio CFF93 All-Atom Force Field for Polycarbonates
,”
J. Am. Chem. Soc.
,
116
(
7
), pp.
2978
2987
.
41.
Heinz
,
H.
,
Lin
,
T.-J.
,
Kishore Mishra
,
R.
, and
Emami
,
F. S.
,
2013
, “
Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field
,”
Langmuir
,
29
(
6
), pp.
1754
1765
.
42.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2021
, “
Energy Absorption Mechanisms of Nanoscopic Multilayer Structures Under Ballistic Impact Loading
,”
Comput. Mater. Sci.
,
195
, p.
110504
.
43.
Gartner
,
T. E.
, and
Jayaraman
,
A.
,
2019
, “
Modeling and Simulations of Polymers: A Roadmap
,”
Macromolecules
,
52
(
3
), pp.
755
786
.
44.
Lempesis
,
N.
,
in ‘t Veld
,
P. J.
, and
Rutledge
,
G. C.
,
2017
, “
Atomistic Simulation of a Thermoplastic Polyurethane and Micromechanical Modeling
,”
Macromolecules
,
50
(
18
), pp.
7399
7409
.
45.
in ‘t Veld
,
P. J.
,
2019
, “Enhanced Monte Carlo.” http://montecarlo.sourceforge.net/emc
46.
Blackwell
,
J.
,
Nagarajan
,
M. R.
, and
Hoitink
,
T. B.
,
1982
, “
Structure of Polyurethane Elastomers: Effect of Chain Extender Length on the Structure of MDI/Diol Hard Segments
,”
Polymer
,
23
(
7
), pp.
950
956
.
47.
Born
,
L.
,
Crone
,
J.
,
Hespe
,
H.
,
Müller
,
E. H.
, and
Wolf
,
K. H.
,
1984
, “
On the Structure of Polyurethane Hard Segments Based on MDI and Butanediol-1,4: X-Ray Diffraction Analysis of Oriented Elastomers and of Single Crystals of a Model Compound
,”
J. Polym. Sci., Polym. Phys. Ed.
,
22
(
2
), pp.
163
173
.
48.
Tsujita
,
Y.
,
Nose
,
T.
, and
Hata
,
T.
,
1973
, “
Thermodynamic Properties of Poly(Ethylene Glycol) and Poly(Tetrahydrofuran). I. P–V–T Relations and Internal Pressure
,”
Polym. J.
,
5
(
2
), pp.
201
207
.
49.
Mock
,
W.
,
Bartyczak
,
S.
,
Lee
,
G.
,
Fedderly
,
J.
,
Jordan
,
K.
,
Elert
,
M.
,
Furnish
,
M. D.
,
Anderson
,
W. W.
,
Proud
,
W. G.
, and
Butler
,
W. T.
,
2009
, “
Dynamic Properties of Polyurea 1000
,”
AIP Conference Proceedings
,
Nashville, TN
,
June 28–July 3
, pp.
1241
1244
.
50.
Hahn
,
E. N.
,
Germann
,
T. C.
,
Ravelo
,
R.
,
Hammerberg
,
J. E.
, and
Meyers
,
M. A.
,
2017
, “
On the Ultimate Tensile Strength of Tantalum
,”
Acta Mater.
,
126
, pp.
313
328
.
51.
Thompson
,
A. P.
,
Plimpton
,
S. J.
, and
Mattson
,
W.
,
2009
, “
General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials Under Periodic Boundary Conditions
,”
J. Chem. Phys.
,
131
(
15
), p.
154107
.
52.
Ju
,
Y.
,
Zhang
,
Q.
,
Gong
,
Z.
,
Ji
,
G.
, and
Zhou
,
L.
,
2013
, “
Molecular Dynamics Simulation of Shock Melting of Aluminum Single Crystal
,”
J. Appl. Phys.
,
114
(
9
), p.
093507
.
53.
Yang
,
X.
,
Zeng
,
X.
,
Pu
,
C.
,
Chen
,
W.
,
Chen
,
H.
, and
Wang
,
F.
,
2018
, “
Molecular Dynamics Modeling of the Hugoniot States of Aluminum
,”
AIP Adv.
,
8
(
10
), p.
105212
.
54.
Reed
,
E. J.
,
Fried
,
L. E.
,
Henshaw
,
W. D.
, and
Tarver
,
C. M.
,
2006
, “
Analysis of Simulation Technique for Steady Shock Waves in Materials With Analytical Equations of State
,”
Phys. Rev. E
,
74
(
5
), p.
056706
.
55.
Marsh
,
S. P.
,
1980
,
LALS Shock Hugoniot Handbook
,
University of California Press
,
Berkeley, CA
.
56.
Pacheco
,
A. H.
,
Gustavsen
,
R. L.
,
Aslam
,
T. D.
, and
Bartram
,
B. D.
,
2017
, “
Hugoniot Based Equation of State for Solid Polyurea and Polyurea Aerogels
,”
AIP Conference Proceedings
,
Tampa Bay, FL
,
June 14–19
, p.
120029
.
57.
Coleman
,
M. M.
,
Sobkowiak
,
M.
,
Pehlert
,
G. J.
,
Painter
,
P. C.
, and
Iqbal
,
T.
,
1997
, “
Infrared Temperature Studies of a Simple Polyurea
,”
Macromol. Chem. Phys.
,
198
(
1
), pp.
117
136
.
58.
Antoun
,
T.
,
Curran
,
D. R.
,
Razorenov
,
S. V.
,
Seaman
,
L.
,
Kanel
,
G. I.
, and
Utkin
,
A. V.
,
2003
,
Spall Fracture
,
Springer-Verlag
,
New York
.
59.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2020
, “
Superior Dynamic Penetration Resistance of Nanoscale Multilayer Polymer/Metal Films
,”
ASME J. Appl. Mech.
,
87
(
12
), p.
121009
.
60.
Dekel
,
E.
,
Eliezer
,
S.
,
Henis
,
Z.
,
Moshe
,
E.
,
Ludmirsky
,
A.
, and
Goldberg
,
I. B.
,
1998
, “
Spallation Model for the High Strain Rates Range
,”
J. Appl. Phys.
,
84
(
9
), pp.
4851
4858
.
61.
Pae
,
K. D.
, and
Bhateja
,
S. K.
,
1975
, “
The Effects of Hydrostatic Pressure on the Mechanical Behavior of Polymers
,”
J. Macromol. Sci., Part C
,
13
(
1
), pp.
1
75
.
62.
Rottler
,
J.
, and
Robbins
,
M. O.
,
2001
, “
Yield Conditions for Deformation of Amorphous Polymer Glasses
,”
Phys. Rev. E
,
64
(
5
), p.
051801
.
63.
Demaske
,
B. J.
,
Zhakhovsky
,
V. V.
,
Inogamov
,
N. A.
, and
Oleynik
,
I. I.
,
2010
, “
Ablation and Spallation of Gold Films Irradiated by Ultrashort Laser Pulses
,”
Phys. Rev. B
,
82
(
6
), p.
064113
.
64.
Pepper
,
J. E.
,
Huneault
,
J.
,
Rahmat
,
M.
,
Ashrafi
,
B.
, and
Petel
,
O. E.
,
2018
, “
The Effect of Curing Agent on the Dynamic Tensile Failure of an Epoxy Subjected to Plate Impact
,”
Int. J. Impact Eng.
,
113
, pp.
203
211
.
65.
Bie
,
B. X.
,
Han
,
J. H.
,
Lu
,
L.
,
Zhou
,
X. M.
,
Qi
,
M. L.
,
Zhang
,
Z.
, and
Luo
,
S. N.
,
2015
, “
Dynamic Fracture of Carbon Nanotube/Epoxy Composites Under High Strain-Rate Loading
,”
Composites, Part A
,
68
, pp.
282
288
.
66.
Siviour
,
C. R.
, and
Jordan
,
J. L.
,
2016
, “
High Strain Rate Mechanics of Polymers: A Review
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
15
32
.
67.
Sarva
,
S. S.
,
Deschanel
,
S.
,
Boyce
,
M. C.
, and
Chen
,
W.
,
2007
, “
Stress–Strain Behavior of a Polyurea and a Polyurethane From Low to High Strain Rates
,”
Polymer
,
48
(
8
), pp.
2208
2213
.
68.
Yi
,
J.
,
Boyce
,
M. C.
,
Lee
,
G. F.
, and
Balizer
,
E.
,
2006
, “
Large Deformation Rate-Dependent Stress–Strain Behavior of Polyurea and Polyurethanes
,”
Polymer
,
47
(
1
), pp.
319
329
.
69.
Somarathna
,
H. M. C. C.
,
Raman
,
S. N.
,
Mohotti
,
D.
,
Mutalib
,
A. A.
, and
Badri
,
K. H.
,
2020
, “
Rate Dependent Tensile Behavior of Polyurethane Under Varying Strain Rates
,”
Constr. Build. Mater.
,
254
, p.
119203
.
70.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Adharapurapu
,
R. R.
,
2006
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2318
2335
.
71.
Choi
,
T.
,
Weksler
,
J.
,
Padsalgikar
,
A.
, and
Runt
,
J.
,
2009
, “
Influence of Soft Segment Composition on Phase-Separated Microstructure of Polydimethylsiloxane-Based Segmented Polyurethane Copolymers
,”
Polymer
,
50
(
10
), pp.
2320
2327
.
72.
McLean
,
R. S.
, and
Sauer
,
B. B.
,
1997
, “
Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers
,”
Macromolecules
,
30
(
26
), pp.
8314
8317
.
73.
Aneja
,
A.
, and
Wilkes
,
G. L.
,
2003
, “
A Systematic Series of ‘Model’ PTMO Based Segmented Polyurethanes Reinvestigated Using Atomic Force Microscopy
,”
Polymer
,
44
(
23
), pp.
7221
7228
.
74.
Garrett
,
J. T.
,
Siedlecki
,
C. A.
, and
Runt
,
J.
,
2001
, “
Microdomain Morphology of Poly(Urethane Urea) Multiblock Copolymers
,”
Macromolecules
,
34
(
20
), pp.
7066
7070
.
75.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2021
, “
Molecular Dynamics Study of the Penetration Resistance of Multilayer Polymer/Ceramic Nanocomposites Under Supersonic Projectile Impacts
,”
Extreme Mech. Lett.
,
44
, p.
101238
.
76.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2020
, “
Molecular Dynamics Study of the Mechanical Behavior of Ultrathin Polymer Metal Multilayers Under Extreme Dynamic Conditions
,”
Comput. Mater. Sci.
,
184
, p.
109951
.
You do not currently have access to this content.