Abstract

The energy adsorption properties of all-metallic corrugated sandwich cylindrical shells (CSCSs) subjected to axial compression loading were investigated by the method combining experiments, finite element (FE) simulations, and theoretical analysis. CSCS specimens manufactured using two different methods, i.e., high-speed wire-cut electric discharge machining (HSWEDM) and extrusion, were tested under axial compression. While specimens fabricated separately by HSWEDM and extrusion both exhibited a stable crushing behavior, the extruded ones were much more applicable as lightweight energy absorbers because of their good energy absorption capacity, repeatability, and low cost. The numerically simulated force–displacement curve and the corresponding deformation morphologies of the CSCS compared well with those obtained from experiments. The specific folding deformation mode was revealed from both experiments and simulations. Subsequently, based upon the mode of folding deformation, a theoretical model was established to predict the mean crushing force of the CSCS construction. It was demonstrated that CSCSs with more corrugated units, smaller value of tc/tf and W/Ro could dissipate more impact energy. Such sandwich cylindrical shells exhibited better energy absorption than monolithic cylindrical shells, with an increase of at least 30%. Ultimately, the dynamic effect under the impact load was further evaluated. The dynamic amplification coefficient of CSCS decreased with the increase of the wall thickness.

References

1.
Lu
,
G.
, and
Yu
,
T.
,
2003
,
Energy Absorption of Structures and Materials
,
Woodhead Publishing Ltd.
,
Cambridge
.
2.
Zhang
,
Z.
,
Liu
,
S.
, and
Tang
,
Z.
,
2011
, “
Comparisons of Honeycomb Sandwich and Foam-Filled Cylindrical Columns Under Axial Crushing Loads
,”
Thin Walled Struct.
,
49
(
9
), pp.
1071
1079
. 10.1016/j.tws.2011.03.017
3.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
(
1
), pp.
10
15
. 10.1093/qjmam/13.1.10
4.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Circular Tubes
,”
Int. J. Impact Eng.
,
2
(
3
), pp.
263
281
. 10.1016/0734-743X(84)90010-1
5.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
. 10.1016/0734-743X(86)90017-5
6.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
. 10.1115/1.3167137
7.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
. 10.1016/0734-743X(84)90005-8
8.
Abramowicz
,
W.
, and
Wierzbicki
,
T.
,
1989
, “
Axial Crushing of Multicorner Sheet Metal Columns
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
113
120
. 10.1115/1.3176030
9.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Ioannidis
,
M. B.
,
Kostazos
,
P. K.
, and
Dimitriou
,
C.
,
2003
, “
Finite Element Simulation of the Axial Collapse of Metallic Thin-Walled Tubes With Octagonal Cross-Section
,”
Thin Walled Struct.
,
41
(
10
), pp.
891
900
. 10.1016/S0263-8231(03)00046-6
10.
Zhang
,
X.
, and
Zhang
,
H.
,
2012
, “
Experimental and Numerical Investigation on Crush Resistance of Polygonal Columns and Angle Elements
,”
Thin Walled Struct.
,
57
, pp.
25
36
. 10.1016/j.tws.2012.04.006
11.
Xiang
,
Y.
,
Yu
,
T.
, and
Yang
,
L.
,
2016
, “
Comparative Analysis of Energy Absorption Capacity of Polygonal Tubes, Multi-Cell Tubes and Honeycombs by Utilizing Key Performance Indicators
,”
Mater. Des.
,
89
, pp.
689
696
. 10.1016/j.matdes.2015.10.004
12.
Tabacu
,
S.
, and
Ducu
,
C.
,
2019
, “
An Analytical Solution for the Estimate of the Mean Crushing Force of Structures With Polygonal and Star-Shaped Cross-Sections Subjected to Axial Load
,”
Int. J. Mech. Sci.
,
161
. 10.1016/j.ijmecsci.2019.105010
13.
Fan
,
Z.
,
Lu
,
G.
,
Yu
,
T. X.
, and
Liu
,
K.
,
2013
, “
Axial Crushing of Triangular Tubes
,”
Int. J. Appl. Mech.
,
5
(
1
), p.
13500008
. 10.1142/S1758825113500087
14.
Deng
,
X.
,
Liu
,
W.
, and
Lin
,
Z.
,
2018
, “
Experimental and Theoretical Study on Crashworthiness of Star-Shaped Tubes Under Axial Compression
,”
Thin Walled Struct.
,
130
, pp.
321
331
. 10.1016/j.tws.2018.06.002
15.
Deng
,
X.
,
Liu
,
W.
, and
Jin
,
L.
,
2018
, “
On the Crashworthiness Analysis and Design of a Lateral Corrugated Tube With a Sinusoidal Cross-Section
,”
Int. J. Mech. Sci.
,
141
, pp.
330
340
. 10.1016/j.ijmecsci.2018.03.001
16.
Tang
,
Z.
,
Liu
,
S.
, and
Zhang
,
Z.
,
2012
, “
Energy Absorption Properties of Non-Convex Multi-Corner Thin-Walled Columns
,”
Thin Walled Struct.
,
51
, pp.
112
120
. 10.1016/j.tws.2011.10.005
17.
Tang
,
Z.
,
Liu
,
S.
, and
Zhang
,
Z.
,
2013
, “
Analysis of Energy Absorption Characteristics of Cylindrical Multi-Cell Columns
,”
Thin Walled Struct.
,
62
, pp.
75
84
. 10.1016/j.tws.2012.05.019
18.
Chen
,
W.
, and
Wierzbicki
,
T.
,
2001
, “
Relative Merits of Single-Cell, Multi-Cell and Foam-Filled Thin-Walled Structures in Energy Absorption
,”
Thin Walled Struct.
,
39
(
4
), pp.
287
306
. 10.1016/S0263-8231(01)00006-4
19.
Zhang
,
X.
,
Cheng
,
G.
, and
Zhang
,
H.
,
2006
, “
Theoretical Prediction and Numerical Simulation of Multi-Cell Square Thin-Walled Structures
,”
Thin Walled Struct.
,
44
(
11
), pp.
1185
1191
. 10.1016/j.tws.2006.09.002
20.
Zhang
,
X.
, and
Zhang
,
H.
,
2012
, “
Numerical and Theoretical Studies on Energy Absorption of Three-Panel Angle Elements
,”
Int. J. Impact Eng.
,
46
, pp.
23
40
. 10.1016/j.ijimpeng.2012.02.002
21.
Zhang
,
X.
, and
Zhang
,
H.
,
2013
, “
Energy Absorption Limit of Plates in Thin-Walled Structures Under Compression
,”
Int. J. Impact Eng.
,
57
, pp.
81
98
. 10.1016/j.ijimpeng.2013.02.001
22.
Zhang
,
X.
, and
Zhang
,
H.
,
2013
, “
Theoretical and Numerical Investigation on the Crush Resistance of Rhombic and Kagome Honeycombs
,”
Compos. Struct.
,
96
, pp.
143
152
. 10.1016/j.compstruct.2012.09.028
23.
Ding
,
X.
,
Tong
,
Z.
,
Liu
,
Y.
, and
Liu
,
S.
,
2018
, “
Dynamic Axial Crush Analysis and Design Optimization of a Square Multi-Cell Thin-Walled Tube With Lateral Variable Thickness
,”
Int. J. Mech. Sci.
,
140
, pp.
13
26
. 10.1016/j.ijmecsci.2018.02.034
24.
Liu
,
S.
,
Tong
,
Z.
,
Tang
,
Z.
,
Liu
,
Y.
, and
Zhang
,
Z.
,
2015
, “
Bionic Design Modification of Non-Convex Multi-Corner Thin-Walled Columns for Improving Energy Absorption Through Adding Bulkheads
,”
Thin Walled Struct.
,
88
, pp.
70
81
. 10.1016/j.tws.2014.11.006
25.
Fan
,
H.
,
Luo
,
Y.
,
Yang
,
F.
, and
Li
,
W.
,
2018
, “
Approaching Perfect Energy Absorption Through Structural Hierarchy
,”
Int. J. Eng. Sci.
,
130
, pp.
12
32
. 10.1016/j.ijengsci.2018.05.005
26.
Reid
,
S. R.
,
1993
, “
Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers
,”
Int. J. Mech. Sci.
,
35
(
12
), pp.
1035
1052
. 10.1016/0020-7403(93)90054-X
27.
Reddy
,
T. Y.
, and
Wall
,
R. J.
,
1988
, “
Axial Compression of Foam-Filled Thin-Walled Circular Tubes
,”
Int. J. Impact Eng.
,
7
(
2
), pp.
151
166
. 10.1016/0734-743X(88)90023-1
28.
Kavi
,
H.
,
Toksoy
,
A. K.
, and
Guden
,
M.
,
2006
, “
Predicting Energy Absorption in a Foam-Filled Thin-Walled Aluminum Tube Based on Experimentally Determined Strengthening Coefficient
,”
Mater. Des.
,
27
(
4
), pp.
263
269
. 10.1016/j.matdes.2004.10.024
29.
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2000
, “
Static and Dynamic Crushing of Circular Aluminium Extrusions With Aluminium Foam Filler
,”
Int. J. Impact Eng.
,
24
(
5
), pp.
475
507
. 10.1016/S0734-743X(99)00170-0
30.
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2000
, “
Static and Dynamic Crushing of Square Aluminium Extrusions With Aluminium Foam Filler
,”
Int. J. Impact Eng.
,
24
(
4
), pp.
347
383
. 10.1016/S0734-743X(99)00169-4
31.
Santosa
,
S.
, and
Wierzbicki
,
T.
,
1998
, “
Crash Behavior of Box Columns Filled With Aluminum Honeycomb or Foam
,”
Comput. Struct.
,
68
(
4
), pp.
343
367
. 10.1016/S0045-7949(98)00067-4
32.
Santosa
,
S. P.
,
Wierzbicki
,
T.
,
Hanssen
,
A. G.
, and
Langseth
,
M.
,
2000
, “
Experimental and Numerical Studies of Foam-Filled Sections
,”
Int. J. Impact Eng.
,
24
(
5
), pp.
509
534
. 10.1016/S0734-743X(99)00036-6
33.
Zarei
,
H.
, and
Kröger
,
M.
,
2008
, “
Optimum Honeycomb Filled Crash Absorber Design
,”
Mater. Des.
,
29
(
1
), pp.
193
204
. 10.1016/j.matdes.2006.10.013
34.
Sun
,
G.
,
Li
,
G.
,
Hou
,
S.
,
Zhou
,
S.
,
Li
,
W.
, and
Li
,
Q.
,
2010
, “
Crashworthiness Design for Functionally Graded Foam-Filled Thin-Walled Structures
,”
Mater. Sci. Eng. A
,
527
(
7
), pp.
1911
1919
. 10.1016/j.msea.2009.11.022
35.
Yin
,
H.
,
Wen
,
G.
,
Fang
,
H.
,
Qing
,
Q.
,
Kong
,
X.
,
Xiao
,
J.
, and
Liu
,
Z.
,
2014
, “
Multiobjective Crashworthiness Optimization Design of Functionally Graded Foam-Filled Tapered Tube Based on Dynamic Ensemble Metamodel
,”
Mater. Des.
,
55
, pp.
747
757
. 10.1016/j.matdes.2013.10.054
36.
Zhu
,
G.
,
Li
,
S.
,
Sun
,
G.
,
Li
,
G.
, and
Li
,
Q.
,
2016
, “
On Design of Graded Honeycomb Filler and Tubal Wall Thickness for Multiple Load Cases
,”
Thin Walled Struct.
,
109
, pp.
377
389
. 10.1016/j.tws.2016.09.017
37.
Cui
,
L.
,
Kiernan
,
S.
, and
Gilchrist
,
M. D.
,
2009
, “
Designing the Energy Absorption Capacity of Functionally Graded Foam Materials
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
215
225
. 10.1016/j.msea.2008.12.011
38.
Zhang
,
Z.
,
Liu
,
S.
, and
Tang
,
Z.
,
2010
, “
Crashworthiness Investigation of Kagome Honeycomb Sandwich Cylindrical Column Under Axial Crushing Loads
,”
Thin Walled Struct.
,
48
(
1
), pp.
9
18
. 10.1016/j.tws.2009.08.002
39.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
. 10.1016/j.ijimpeng.2003.08.007
40.
Han
,
B.
,
Zhang
,
Z.
,
Zhang
,
Q.
,
Zhang
,
Q.
,
Lu
,
T. J.
, and
Lu
,
B.
,
2017
, “
Recent Advances in Hybrid Lattice-Cored Sandwiches for Enhanced Multifunctional Performance
,”
Extreme Mech. Lett.
,
10
, pp.
58
69
. 10.1016/j.eml.2016.11.009
41.
Han
,
B.
,
Qin
,
K.
,
Yu
,
B.
,
Wang
,
B.
,
Zhang
,
Q.
, and
Lu
,
T. J.
,
2016
, “
Honeycomb–Corrugation Hybrid as a Novel Sandwich Core for Significantly Enhanced Compressive Performance
,”
Mater. Des.
,
93
, pp.
271
282
. 10.1016/j.matdes.2015.12.158
42.
Bin
,
H.
,
Bo
,
Y.
,
Yu
,
X.
,
Chang-Qing
,
C.
,
Qian-Cheng
,
Z.
, and
Jian
,
L. T.
,
2015
, “
Foam Filling Radically Enhances Transverse Shear Response of Corrugated Sandwich Plates
,”
Mater. Des.
,
77
, pp.
132
141
. 10.1016/j.matdes.2015.03.050
43.
Xu
,
A.
,
Vodenitcharova
,
T.
,
Kabir
,
K.
,
Flores-Johnson
,
E. A.
, and
Hoffman
,
M.
,
2014
, “
Finite Element Analysis of Indentation of Aluminium Foam and Sandwich Panels With Aluminium Foam Core
,”
Mater. Sci. Eng. A
,
599
, pp.
125
133
. 10.1016/j.msea.2014.01.080
44.
Pollien
,
A.
,
Conde
,
Y.
,
Pambaguian
,
L.
, and
Mortensen
,
A.
,
2005
, “
Graded Open-Cell Aluminium Foam Core Sandwich Beams
,”
Mater. Sci. Eng. A
,
404
(
1
), pp.
9
18
. 10.1016/j.msea.2005.05.096
45.
Mohan
,
K.
,
Yip
,
T. H.
,
Idapalapati
,
S.
, and
Chen
,
Z.
,
2011
, “
Impact Response of Aluminum Foam Core Sandwich Structures
,”
Mater. Sci. Eng. A
,
529
, pp.
94
101
. 10.1016/j.msea.2011.08.066
46.
Yan
,
L. L.
,
Yu
,
B.
,
Han
,
B.
,
Zhang
,
Q. C.
,
Lu
,
T. J.
, and
Lu
,
B. H.
,
2020
, “
Effects of Aluminum Foam Filling on the Low-Velocity Impact Response of Sandwich Panels With Corrugated Cores
,”
J. Sandwich Struct. Mater.
,
22
(
4
), pp.
929
947
. 10.1177/1099636218776585
47.
Zheng
,
G.
,
Wu
,
S.
,
Sun
,
G.
,
Li
,
G.
, and
Li
,
Q.
,
2014
, “
Crushing Analysis of Foam-Filled Single and Bitubal Polygonal Thin-Walled Tubes
,”
Int. J. Mech. Sci.
,
87
, pp.
226
240
. 10.1016/j.ijmecsci.2014.06.002
48.
Liu
,
W.
,
Lin
,
Z.
,
He
,
J.
,
Wang
,
N.
, and
Deng
,
X.
,
2016
, “
Crushing Behavior and Multi-Objective Optimization on the Crashworthiness of Sandwich Structure With Star-Shaped Tube in the Center
,”
Thin Walled Struct.
,
108
, pp.
205
214
. 10.1016/j.tws.2016.08.021
49.
Li
,
W.
,
Sun
,
F.
,
Wei
,
W.
,
Liu
,
D.
,
Zhang
,
X.
,
Li
,
M.
, and
Fan
,
H.
,
2018
, “
Fabrication and Testing of Composite Corrugated-Core Sandwich Cylinder
,”
Compos. Sci. Technol.
,
156
, pp.
127
135
. 10.1016/j.compscitech.2017.12.033
50.
Jiang
,
S.
,
Sun
,
F.
, and
Fan
,
H.
,
2017
, “
Multi-Failure Theory of Composite Orthogrid Sandwich Cylinder
,”
Aerosp. Sci. Technol.
,
70
, pp.
520
525
. 10.1016/j.ast.2017.08.035
51.
Xiong
,
J.
,
Feng
,
L.
,
Ghosh
,
R.
,
Wu
,
H.
,
Wu
,
L.
,
Ma
,
L.
, and
Vaziri
,
A.
,
2016
, “
Fabrication and Mechanical Behavior of Carbon Fiber Composite Sandwich Cylindrical Shells With Corrugated Cores
,”
Compos. Struct.
,
156
, pp.
307
319
. 10.1016/j.compstruct.2015.10.009
52.
Yang
,
J.
,
Xiong
,
J.
,
Ma
,
L.
,
Feng
,
L.-N.
,
Wang
,
S.
, and
Wu
,
L.
,
2015
, “
Modal Response of All-Composite Corrugated Sandwich Cylindrical Shells
,”
Compos. Sci. Technol.
,
115
, pp.
9
20
. 10.1016/j.compscitech.2015.04.015
53.
Han
,
Y.
,
Wang
,
P.
,
Fan
,
H.
,
Sun
,
F.
,
Chen
,
L.
, and
Fang
,
D.
,
2015
, “
Free Vibration of CFRC Lattice-Core Sandwich Cylinder With Attached Mass
,”
Compos. Sci. Technol.
,
118
, pp.
226
235
. 10.1016/j.compscitech.2015.09.007
54.
Yang
,
M.
,
Han
,
B.
,
Su
,
P.
,
Wei
,
Z.
,
Zhang
,
Q.
,
Zhang
,
Q.
, and
Lu
,
T. J.
,
2020
, “
Free Vibration and Axial Compression of All-Metallic Cylindrical and Truncated Conical Sandwich Shells With Corrugated Cores
,”
J. Sandwich Struct. Mater.
10.1177/1099636220909792
55.
Su
,
P.-B.
,
Han
,
B.
,
Yang
,
M.
,
Wei
,
Z.-H.
,
Zhao
,
Z.-Y.
,
Zhang
,
Q.-C.
,
Zhang
,
Q.
,
Qin
,
K.-K.
, and
Lu
,
T. J.
,
2018
, “
Axial Compressive Collapse of Ultralight Corrugated Sandwich Cylindrical Shells
,”
Mater. Des.
,
160
, pp.
325
337
. 10.1016/j.matdes.2018.09.034
56.
Zhang
,
X.
, and
Zhang
,
H.
,
2014
, “
Axial Crushing of Circular Multi-Cell Columns
,”
Int. J. Impact Eng.
,
65
, pp.
110
125
. 10.1016/j.ijimpeng.2013.12.002
57.
Guillow
,
S. R.
,
Lu
,
G.
, and
Grzebieta
,
R. H.
,
2001
, “
Quasi-Static Axial Compression of Thin-Walled Circular Aluminium Tubes
,”
Int. J. Mech. Sci.
,
43
(
9
), pp.
2103
2123
. 10.1016/S0020-7403(01)00031-5
You do not currently have access to this content.