The efficiency of the critical plane model of Smith, Watson, and Topper in estimating fatigue life for loaded notched shape memory alloy members undergoing thermal cycling is demonstrated. The field intensity approach is adopted, which characterizes fatigue damage over a critical notch root region rather than at a critical point.

References

1.
Otsuka
,
K.
, and
Wayman
,
C.
(Eds.),
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge
.
2.
Duerig
,
T.
,
Melton
,
K.
,
Stockel
,
D.
, and
Wayman
,
C.
, eds.,
1990
,
Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
,
London
.
3.
Lagoudas
,
D. C.
, eds.,
2008
,
Shape Memory Alloys: Modelling and Engineering Applications
,
Springer
,
New York
.
4.
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2007
, “
Aerospace Applications of Shape Memory Alloys
,”
P. I. Mech. Eng. G-J. Aer.
,
221
(
4
), pp.
535
552
.
5.
Sreekumar
,
M.
,
Nagarajan
,
T.
,
Singaperumal
,
M.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2007
, “
Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots
,”
Ind. Robot
,
34
(
4
), pp.
285
294
.
6.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory alloy Mini-Actuators
,”
Sens. Actuat. A-Phys.
,
158
(
1
), pp.
149
160
.
7.
Robertson
,
S.
,
Pelton
,
A.
, and
Ritchie
,
R.
,
2012
, “
Mechanical Fatigue and Fracture of Nitinol
,”
Int. Mater. Rev.
,
57
(
1
), pp.
1
36
.
8.
Pelton
,
A.
,
Huang
,
G.
,
Moine
,
P.
, and
Sinclair
,
R.
,
2012
, “
Effects of Thermal Cycling on Microstructure and Properties in Nitinol
,”
Mater. Sci. Eng. A
,
532
, pp.
130
138
.
9.
Mahtabi
,
M.
,
Shamsaei
,
N.
, and
Mitchell
,
M.
,
2015
, “
Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
228
254
.
10.
Eggeler
,
G.
,
Hornbogen
,
E.
,
Yawny
,
A.
,
Heckmann
,
A.
, and
Wagner
,
M.
,
2004
, “
Structural and Functional Fatigue of NiTi Shape Memory Alloys
,”
Mat. Sci. Eng. A-Struct.
,
378
, pp.
24
33
.
11.
Hornbogen
,
E.
,
2004
, “
Review: Thermo-Mechanical Fatigue of Shape Memory Alloys
,”
J. Mater. Sci.
,
39
(
2
), pp.
385
399
.
12.
Grossmann
,
C.
,
Frenzel
,
J.
,
Sampath
,
V.
,
Depka
,
T.
, and
Eggeler
,
G.
,
2009
, “
Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators
,”
Metall. Mater. Trans A 40
,
A
, pp.
2530
2544
.
13.
McKelvey
,
A.
, and
Ritchie
,
R.
,
2001
, “
Fatigue-Crack Growth Behavior in the Superelastic and Shape-Memory Alloy Nitinol
,”
Metal. Mater. Trans. A
,
32
(
13
), pp.
731
743
.
14.
Chluba
,
C.
,
Ge
,
W.
,
DeMiranda
,
R.
,
Strobel
,
J.
,
Kienle
,
L.
,
Quandt
,
E.
, and
Wuttig
,
M.
,
2015
, “
Ultralow-Fatigue Shape Memory Alloy Films
,”
Science
,
348
(
6238
), pp.
1004
1007
.
15.
Thumann
,
M.
, and
Hornbogen
,
E.
,
1988
, “
Thermal and Mechanical Fatigue in Cu-based Shape Memory Alloys
,”
Z. Metallkd./Mater. Res. Adv. Tech.
,
79
(
2
), pp.
119
126
.
16.
Eggeler
,
G.
,
Hornbogen
,
E.
,
Yawny
,
A.
,
Heckmann
,
A.
, and
Wagner
,
M.
,
2004
, “
Structural and Functional Fatigue of Niti Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
378
, pp.
24
33
.
17.
Achitei
,
D.
,
Galuşca
,
D.
,
Vizureanu
,
P.
,
Carabet
,
R.
, and
Cimpoeşu
,
N.
,
2009
, “
Aspects Regarding Thermo-Mechanical Fatigue of Shape Memory Alloys
,”
Metal. Int.
,
14
, pp.
45
48
.
18.
Kö Nig
,
D.
,
Zarnetta
,
R.
,
Savan
,
A.
,
Brunken
,
H.
, and
Ludwig
,
A.
,
2011
, “
Phase Transformation, Structural and Functional Fatigue Properties of TiNiHf Shape Memory thin Films
,”
Acta Mater.
,
59
(
8
), pp.
3267
3275
.
19.
Dunand-Châtellet
,
C.
, and
Moumni
,
Z.
,
2012
, “
Experimental Analysis of the Fatigue of Shape Memory Alloys Through Power-Law Statistics
,”
Int. J. Fatigue
,
36
(
1
), pp.
163
170
.
20.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Functional Fatigue of NiTi Shape Memory Wires Under Various Loading Conditions
,”
Int. J. Fatigue
,
69
, pp.
71
83
.
21.
Saikrishna
,
C.
,
Ramaiah
,
K.
,
Bhagyaraj
,
J.
,
Gouthama
, and
Bhaumik
,
S.
,
2013
, “
Influence of Stored Elastic Strain Energy on Fatigue Behaviour of NiTi Shape Memory Alloy Thermal Actuator Wire
,”
Mat. Sci. Eng. A-Struct.
,
587
, pp.
65
71
.
22.
Karaman
,
I.
,
Evirgen
,
A.
,
Hayrettin
,
C.
,
Noebe
,
R.
, and
Ma
,
J.
,
2013
, “
Recent Developments in High Temperature Shape Memory Alloys
,”
24th Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition
,
ASM
,
Bellevue, WA
.
23.
Barrera
,
N.
,
Biscari
,
P.
, and
Urbano
,
M.
,
2014
, “
Macroscopic Modeling of Functional Fatigue in Shape Memory Alloys
,”
Eur. J. Mech. A-Solid
,
45
, pp.
101
109
.
24.
Benafan
,
O.
,
Brown
,
J.
,
Calkins
,
F.
,
Kumar
,
P.
,
Stebner
,
A.
,
Turner
,
T.
,
Vaidyanathan
,
R.
,
Webster
,
J.
, and
Young
,
M.
,
2014
, “
Shape Memory Alloy Actuator Design: Casmart Collaborative Best Practices and Case Studies
,”
Int. J. Mech. Mater. Design
,
10
(
1
), pp.
1
42
.
25.
Gao
,
Y.
,
Casalena
,
L.
,
Bowers
,
M.
,
Noebe
,
R.
,
Mills
,
M. J.
, and
Wang
,
Y.
,
2017
, “
An Origin of Fatigue of Shape Memory Alloys
,”
Acta Mater.
,
126
(
10
), pp.
389
400
.
26.
Smith
,
K.
,
Watson
,
P.
, and
Topper
,
T.
,
1970
, “
Stress–Strain Function for the Fatigue of Metals
,”
J Mater
,
5
(
4
), pp.
767
778
.
27.
Calhoun
,
C.
,
Wheeler
,
R.
,
Baxevanis
,
T.
, and
Lagoudas
,
D.
,
2015
, “
Actuation Fatigue Life Prediction of Shape Memory Alloys Under the Constant-Stress Loading Condition
,”
Scr. Mater.
,
95
, pp.
58
61
.
28.
Bigeon
,
M.
, and
Morin
,
M.
,
1996
, “
Thermomechanical Study of the Stress Assisted Two Way Memory Effect Fatigue in TiNi and CuZnAl Wires
,”
Scr. Mater.
,
35
(
12
), pp.
1373
1378
.
29.
Lagoudas
,
D.
,
Miller
,
D.
,
Rong
,
L.
, and
Kumar
,
P.
,
2009
, “
Thermomechanical Fatigue of Shape Memory Alloys
,”
Smart Mater. Struct.
,
18
(
8
), pp.
085021
.
30.
Bertacchini
,
O.
,
Lagoudas
,
D.
, and
Patoor
,
E.
,
2009
, “
Thermomechanical Transformation Fatigue of TiNiCu SMA Actuators Under a Corrosive Environment—Part I: Experimental Results
,”
Int. J. Fatigue
,
31
(
10
), pp.
1571
1578
.
31.
Schick
,
J.
,
2009
, “
Transformation Induced Fatigue of Ni-rich NiTi Shape Memory Alloy Actuators
,” Master’s thesis,
Texas A&M University
.
32.
Wheeler
,
R.
,
Santa-Cruz
,
J.
,
Hartl
,
D.
, and
Lagoudas
,
D.
,
2013
, “
Effect of Processing and Loading on Equiatomic NiTi Fatigue Life and Localized Failure Mechanisms
,”
Mechanics and Behavior of Active Materials, Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, ASME,
New York
.
33.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires
,”
J. Mater. Eng. Perform.
,
23
(
7
), pp.
2403
2411
.
34.
Harvey
,
S.
,
Marsh
,
P.
, and
Gerberich
,
W.
,
1994
, “
Atomic Force Microscopy and Modeling of Fatigue Crack Initiation in Metals
,”
Acta Metall. Mater.
,
42
(
10
), pp.
3493
3502
.
35.
Le
,
J.-L.
,
Xu
,
Z.
, and
Eliáš
,
J.
,
2018
, “
Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
,”
J. Eng. Mech.
,
144
(
4
), p.
04018017
.
36.
Weixing
,
Y.
,
1993
, “
Stress Field Intensity Approach for Predicting Fatigue Life
,”
Int. J. Fatigue
,
15
(
3
), pp.
243
246
.
37.
Yao
,
W.
,
1996
, “
The Prediction of Fatigue Behaviours by Stress Field Intensity Approach
,”
Acta Mech. Sol. Sin.
,
9
, pp.
337
349
.
38.
Shang
,
D.-G.
,
Wang
,
D.-K.
,
Li
,
M.
, and
Yao
,
W.-X.
,
2001
, “
Local Stress–Strain Field Intensity Approach to Fatigue Life Prediction Under Random Cyclic Loading
,”
Int. J. Fatigue
,
23
(
10
), pp.
903
910
.
39.
Wheeler
,
R.
,
Ottmers
,
C.
,
Hewling
,
B.
, and
Lagoudas
,
D.
,
2016
, “
Actuator Lifetime Predictions for Ni60Ti40 Shape Memory Alloy Plate Actuators
,”
Proceedings of SPIE - The International Society for Optical Engineering
, Vol.
9800
,
Las Vegas, NV
.
40.
Neuber
,
H.
,
1960
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law
,”
J. Appl. Mech., Trans. ASME
,
28
(
4
), pp.
544
550
.
41.
Bo
,
Z.
, and
Lagoudas
,
D.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part I: Theoretical Derivations
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1089
1140
.
42.
Lagoudas
,
D.
, and
Bo
,
Z.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part II: Material Characterization and Experimental Results for a Stable Transformation Cycle
,”
Int. Engng. Sci.
,
37
(
9
), pp.
1141
1173
.
43.
Bo
,
Z.
, and
Lagoudas
,
D.
,
1999
, “
Thermomechanical Modeling of Polycrystalline SMAs under cyclic loading, Part III: Evolution of Plastic Strains and Two-Way Shape Memory Effect
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1175
1203
.
You do not currently have access to this content.