The efficiency of the critical plane model of Smith, Watson, and Topper in estimating fatigue life for loaded notched shape memory alloy members undergoing thermal cycling is demonstrated. The field intensity approach is adopted, which characterizes fatigue damage over a critical notch root region rather than at a critical point.
Issue Section:
Technical Brief
References
1.
Otsuka
, K.
, and Wayman
, C.
(Eds.), 1999
, Shape Memory Materials
, Cambridge University Press
, Cambridge
.2.
Duerig
, T.
, Melton
, K.
, Stockel
, D.
, and Wayman
, C.
, eds., 1990
, Engineering Aspects of Shape Memory Alloys
, Butterworth-Heinemann
, London
.3.
Lagoudas
, D. C.
, eds., 2008
, Shape Memory Alloys: Modelling and Engineering Applications
, Springer
, New York
.4.
Hartl
, D. J.
, and Lagoudas
, D. C.
, 2007
, “Aerospace Applications of Shape Memory Alloys
,” P. I. Mech. Eng. G-J. Aer.
, 221
(4
), pp. 535
–552
. 5.
Sreekumar
, M.
, Nagarajan
, T.
, Singaperumal
, M.
, Zoppi
, M.
, and Molfino
, R.
, 2007
, “Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots
,” Ind. Robot
, 34
(4
), pp. 285
–294
. 6.
Nespoli
, A.
, Besseghini
, S.
, Pittaccio
, S.
, Villa
, E.
, and Viscuso
, S.
, 2010
, “The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory alloy Mini-Actuators
,” Sens. Actuat. A-Phys.
, 158
(1
), pp. 149
–160
. 7.
Robertson
, S.
, Pelton
, A.
, and Ritchie
, R.
, 2012
, “Mechanical Fatigue and Fracture of Nitinol
,” Int. Mater. Rev.
, 57
(1
), pp. 1
–36
. 8.
Pelton
, A.
, Huang
, G.
, Moine
, P.
, and Sinclair
, R.
, 2012
, “Effects of Thermal Cycling on Microstructure and Properties in Nitinol
,” Mater. Sci. Eng. A
, 532
, pp. 130
–138
. 9.
Mahtabi
, M.
, Shamsaei
, N.
, and Mitchell
, M.
, 2015
, “Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges
,” J. Mech. Behav. Biomed. Mater.
, 50
, pp. 228
–254
. 10.
Eggeler
, G.
, Hornbogen
, E.
, Yawny
, A.
, Heckmann
, A.
, and Wagner
, M.
, 2004
, “Structural and Functional Fatigue of NiTi Shape Memory Alloys
,” Mat. Sci. Eng. A-Struct.
, 378
, pp. 24
–33
. 11.
Hornbogen
, E.
, 2004
, “Review: Thermo-Mechanical Fatigue of Shape Memory Alloys
,” J. Mater. Sci.
, 39
(2
), pp. 385
–399
. 12.
Grossmann
, C.
, Frenzel
, J.
, Sampath
, V.
, Depka
, T.
, and Eggeler
, G.
, 2009
, “Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators
,” Metall. Mater. Trans A 40
, A
, pp. 2530
–2544
. 13.
McKelvey
, A.
, and Ritchie
, R.
, 2001
, “Fatigue-Crack Growth Behavior in the Superelastic and Shape-Memory Alloy Nitinol
,” Metal. Mater. Trans. A
, 32
(13
), pp. 731
–743
. 14.
Chluba
, C.
, Ge
, W.
, DeMiranda
, R.
, Strobel
, J.
, Kienle
, L.
, Quandt
, E.
, and Wuttig
, M.
, 2015
, “Ultralow-Fatigue Shape Memory Alloy Films
,” Science
, 348
(6238
), pp. 1004
–1007
. 15.
Thumann
, M.
, and Hornbogen
, E.
, 1988
, “Thermal and Mechanical Fatigue in Cu-based Shape Memory Alloys
,” Z. Metallkd./Mater. Res. Adv. Tech.
, 79
(2
), pp. 119
–126
.16.
Eggeler
, G.
, Hornbogen
, E.
, Yawny
, A.
, Heckmann
, A.
, and Wagner
, M.
, 2004
, “Structural and Functional Fatigue of Niti Shape Memory Alloys
,” Mater. Sci. Eng. A
, 378
, pp. 24
–33
. 17.
Achitei
, D.
, Galuşca
, D.
, Vizureanu
, P.
, Carabet
, R.
, and Cimpoeşu
, N.
, 2009
, “Aspects Regarding Thermo-Mechanical Fatigue of Shape Memory Alloys
,” Metal. Int.
, 14
, pp. 45
–48
.18.
Kö Nig
, D.
, Zarnetta
, R.
, Savan
, A.
, Brunken
, H.
, and Ludwig
, A.
, 2011
, “Phase Transformation, Structural and Functional Fatigue Properties of TiNiHf Shape Memory thin Films
,” Acta Mater.
, 59
(8
), pp. 3267
–3275
. 19.
Dunand-Châtellet
, C.
, and Moumni
, Z.
, 2012
, “Experimental Analysis of the Fatigue of Shape Memory Alloys Through Power-Law Statistics
,” Int. J. Fatigue
, 36
(1
), pp. 163
–170
. 20.
Scirè Mammano
, G.
, and Dragoni
, E.
, 2014
, “Functional Fatigue of NiTi Shape Memory Wires Under Various Loading Conditions
,” Int. J. Fatigue
, 69
, pp. 71
–83
. 21.
Saikrishna
, C.
, Ramaiah
, K.
, Bhagyaraj
, J.
, Gouthama
, and Bhaumik
, S.
, 2013
, “Influence of Stored Elastic Strain Energy on Fatigue Behaviour of NiTi Shape Memory Alloy Thermal Actuator Wire
,” Mat. Sci. Eng. A-Struct.
, 587
, pp. 65
–71
. 22.
Karaman
, I.
, Evirgen
, A.
, Hayrettin
, C.
, Noebe
, R.
, and Ma
, J.
, 2013
, “Recent Developments in High Temperature Shape Memory Alloys
,” 24th Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition
, ASM
, Bellevue, WA
.23.
Barrera
, N.
, Biscari
, P.
, and Urbano
, M.
, 2014
, “Macroscopic Modeling of Functional Fatigue in Shape Memory Alloys
,” Eur. J. Mech. A-Solid
, 45
, pp. 101
–109
. 24.
Benafan
, O.
, Brown
, J.
, Calkins
, F.
, Kumar
, P.
, Stebner
, A.
, Turner
, T.
, Vaidyanathan
, R.
, Webster
, J.
, and Young
, M.
, 2014
, “Shape Memory Alloy Actuator Design: Casmart Collaborative Best Practices and Case Studies
,” Int. J. Mech. Mater. Design
, 10
(1
), pp. 1
–42
. 25.
Gao
, Y.
, Casalena
, L.
, Bowers
, M.
, Noebe
, R.
, Mills
, M. J.
, and Wang
, Y.
, 2017
, “An Origin of Fatigue of Shape Memory Alloys
,” Acta Mater.
, 126
(10
), pp. 389
–400
. 26.
Smith
, K.
, Watson
, P.
, and Topper
, T.
, 1970
, “Stress–Strain Function for the Fatigue of Metals
,” J Mater
, 5
(4
), pp. 767
–778
.27.
Calhoun
, C.
, Wheeler
, R.
, Baxevanis
, T.
, and Lagoudas
, D.
, 2015
, “Actuation Fatigue Life Prediction of Shape Memory Alloys Under the Constant-Stress Loading Condition
,” Scr. Mater.
, 95
, pp. 58
–61
. 28.
Bigeon
, M.
, and Morin
, M.
, 1996
, “Thermomechanical Study of the Stress Assisted Two Way Memory Effect Fatigue in TiNi and CuZnAl Wires
,” Scr. Mater.
, 35
(12
), pp. 1373
–1378
. 29.
Lagoudas
, D.
, Miller
, D.
, Rong
, L.
, and Kumar
, P.
, 2009
, “Thermomechanical Fatigue of Shape Memory Alloys
,” Smart Mater. Struct.
, 18
(8
), pp. 085021
. 30.
Bertacchini
, O.
, Lagoudas
, D.
, and Patoor
, E.
, 2009
, “Thermomechanical Transformation Fatigue of TiNiCu SMA Actuators Under a Corrosive Environment—Part I: Experimental Results
,” Int. J. Fatigue
, 31
(10
), pp. 1571
–1578
. 31.
Schick
, J.
, 2009
, “Transformation Induced Fatigue of Ni-rich NiTi Shape Memory Alloy Actuators
,” Master’s thesis, Texas A&M University
.32.
Wheeler
, R.
, Santa-Cruz
, J.
, Hartl
, D.
, and Lagoudas
, D.
, 2013
, “Effect of Processing and Loading on Equiatomic NiTi Fatigue Life and Localized Failure Mechanisms
,” Mechanics and Behavior of Active Materials, Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, ASME, New York
.33.
Scirè Mammano
, G.
, and Dragoni
, E.
, 2014
, “Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires
,” J. Mater. Eng. Perform.
, 23
(7
), pp. 2403
–2411
. 34.
Harvey
, S.
, Marsh
, P.
, and Gerberich
, W.
, 1994
, “Atomic Force Microscopy and Modeling of Fatigue Crack Initiation in Metals
,” Acta Metall. Mater.
, 42
(10
), pp. 3493
–3502
. 35.
Le
, J.-L.
, Xu
, Z.
, and Eliáš
, J.
, 2018
, “Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
,” J. Eng. Mech.
, 144
(4
), p. 04018017
. 36.
Weixing
, Y.
, 1993
, “Stress Field Intensity Approach for Predicting Fatigue Life
,” Int. J. Fatigue
, 15
(3
), pp. 243
–246
. 37.
Yao
, W.
, 1996
, “The Prediction of Fatigue Behaviours by Stress Field Intensity Approach
,” Acta Mech. Sol. Sin.
, 9
, pp. 337
–349
.38.
Shang
, D.-G.
, Wang
, D.-K.
, Li
, M.
, and Yao
, W.-X.
, 2001
, “Local Stress–Strain Field Intensity Approach to Fatigue Life Prediction Under Random Cyclic Loading
,” Int. J. Fatigue
, 23
(10
), pp. 903
–910
. 39.
Wheeler
, R.
, Ottmers
, C.
, Hewling
, B.
, and Lagoudas
, D.
, 2016
, “Actuator Lifetime Predictions for Ni60Ti40 Shape Memory Alloy Plate Actuators
,” Proceedings of SPIE - The International Society for Optical Engineering
, Vol. 9800
, Las Vegas, NV
.40.
Neuber
, H.
, 1960
, “Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law
,” J. Appl. Mech., Trans. ASME
, 28
(4
), pp. 544
–550
. 41.
Bo
, Z.
, and Lagoudas
, D.
, 1999
, “Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part I: Theoretical Derivations
,” Int. J. Eng. Sci.
, 37
(9
), pp. 1089
–1140
. 42.
Lagoudas
, D.
, and Bo
, Z.
, 1999
, “Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part II: Material Characterization and Experimental Results for a Stable Transformation Cycle
,” Int. Engng. Sci.
, 37
(9
), pp. 1141
–1173
. 43.
Bo
, Z.
, and Lagoudas
, D.
, 1999
, “Thermomechanical Modeling of Polycrystalline SMAs under cyclic loading, Part III: Evolution of Plastic Strains and Two-Way Shape Memory Effect
,” Int. J. Eng. Sci.
, 37
(9
), pp. 1175
–1203
. Copyright © 2019 by ASME
You do not currently have access to this content.