In applying the Udwadia–Kalaba equation for constrained mechanical systems, a direct proof of the equivalence of first integrals and nonholonomic constraints is given, and it is demonstrated that the generalized force of the system is equivalent to the constraint force derived by all first integrals of the nonholonomic constraints. Furthermore, depending on whether complete information is included in the subsets of the first integrals or not, the concept of “multiple kernel” of the system is introduced, and then the core groups of the first integrals and the folding index, which reveals the “simplicity” of the system, are defined. Finally, the onefold system is discussed in detail, and the judgment method is given. To verify the feasibility of this method and illustrate the application of the multiple kernel theory, three examples are considered. The new concepts and results presented in this paper help reveal the inner structure of the general mechanical system, which forms the foundation of control theory of constraint motions, and the multiple kernel analysis of the complex systems can be a new research area of analytic mechanics in the future.

References

1.
Arnold
,
V. I.
,
Kozlov
,
V. V.
, and
Neishtadt
,
A. I.
,
1988
,
Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences
, Vol.
III
,
Springer
,
Berlin, Germany
.
2.
Zhang
,
H. B.
, and
Chen
,
H. B.
,
2017
, “
Noether’s Theorem of Fractional Birkhoffian Systems
,”
J. Math. Anal. Appl.
,
456
(
2
), pp.
1442
1456
.
3.
Bartoszek
,
K.
, and
Bartoszek
,
W.
,
2017
, “
A Noether Theorem for Stochastic Operators on Schatten Classes
,”
J. Math. Anal. Appl.
,
452
(
2
), pp.
1395
1412
.
4.
Bulchandani
,
V. B.
,
2017
, “
On Classical Integrability of the Hydrodynamics of Quantum Integrable Systems
,”
J. Phys. A Math. Theor.
,
50
(
43
), p.
435203
.
5.
Rosenberg
,
R. M.
,
1977
,
Analytical Dynamics of Discrete System
,
Plenum Press
,
New York
.
6.
Bates
,
L.
,
2002
, “
Problems and Progress in Nonholonomic Reduction
,”
Rep. Math. Phys.
,
49
(
2–3
), pp.
143
149
.
7.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1994
,
Mechanics (the 3th Edition), Course of Theoretical Physics
, Vol.
I
,
Elsevier
,
Singapore
.
8.
Condurache
,
D.
, and
Martinusi
,
V.
,
2007
, “
A Complete Closed Form Vectorial Solution to the Kepler Problem
,”
Meccanica
,
42
(
5
), pp.
465
476
.
9.
Terra
,
G.
, and
Kobayashi
,
M. H.
,
2004
, “
On Classical Mechanical Systems With Non-Linear Constraints
,”
J. Geom. Phys.
,
49
(
3–4
), pp.
385
417
.
10.
Brogliato
,
B.
,
2013
, “
Inertial Couplings Between Unilateral and Bilateral Holonomic Constraints in Frictionless Lagrangian Systems
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
289
325
.
11.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. A
,
439
, pp.
407
410
.
12.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
,
Analytical Dynamics: A New Approach
,
Cambridge University Press
,
Cambridge, UK
.
13.
Udwadia
,
F. E.
,
2000
, “
Fundamental Principles of Lagrangian Dynamics: Mechanical Systems With Non-Ideal, Holonomic, and Nonholonomic Constraints
,”
J. Math. Anal. Appl.
,
251
(
1
), pp.
341
355
.
14.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2000
, “
Nonideal Constraints and Lagrangian Dynamics
,”
J. Aerosp. Eng.
,
13
(
1
), pp.
17
22
.
15.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2001
, “
Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
462
467
.
16.
Udwadia
,
F. E.
,
2005
, “
New General Principle of Mechanics and Its Application to General Nonideal Nonholonomic Systems
,”
J. Eng. Mech.
,
131
(
4
), pp.
444
450
.
17.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2002
, “
What Is the General Form of the Explicit Equations of Motion for Constrained Mechanical Systems
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
335
339
.
18.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. R. Soc. A
,
462
(
2071
), pp.
2097
2117
.
19.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2007
, “
Explicit Poincare Equations of Motion for General Constrained Systems. Part I. Analytical Results
,”
Proc. R. Soc. A
,
463
(
2082
), pp.
1421
1434
.
20.
Yao
,
W. L.
, and
Yang
,
L. S.
,
2015
, “
Discussion on Udwadia–Kalaba Dynamic Formulation for General Non-Ideal Systems
,”
Mech. Eng.
,
37
(
1
), pp.
104
108
(in Chinese).
21.
Pennestri
,
E.
,
Valentini
,
P. P.
, and
de Falco
,
D.
,
2010
, “
An Application of the Udwadia–Kalaba Dynamic Formulation to Flexible Multibody Systems
,”
J. Franklin Inst.
,
347
(
1
), pp.
173
194
.
22.
Cho
,
H.
, and
Udwadia
,
F. E.
,
2010
, “
Explicit Solution to the Full Nonlinear Problem for Satellite Formation-Keeping
,”
Acta Astronaut.
,
67
(
3–4
), pp.
369
387
.
23.
de Falco
,
D.
,
Pennestri
,
E.
, and
Vita
,
L.
,
2009
, “
Investigation of the Influence of Pseudoinverse Matrix Calculations on Multibody Dynamics Simulations by Means of the Udwadia–Kalaba Formulation
,”
J. Aerosp. Eng.
,
22
(
4
), pp.
365
372
.
24.
Huang
,
K.
,
Sun
,
S. Q.
,
Zhen
,
S. C.
,
Ge
,
X. F.
, and
Zhu
,
Y. Q.
,
2017
, “
Dynamic Analysis and Tracking Trajectory Control of a Crane
,”
Proc. Inst. Mech. Eng. E J. Process Mech. Eng.
,
231
(
5
), pp.
1045
1052
.
25.
Solomin
,
J. E.
, and
Zuccalli
,
M.
,
2005
, “
A Geometric Approach to the Extended D’Alembert Principle of Udwadia–Kalaba–Hee–Chang
,”
Q. Appl. Math.
,
63
(
2
), pp.
269
275
.
26.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2010
, “
Hamel’s Paradox and the Foundations of Analytical Dynamics
,”
Appl. Math. Comput.
,
217
(
3
), pp.
1253
1265
.
27.
Foster
,
J. T.
,
2016
, “
A Variationally Consistent Approach to Constrained Motion
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
054501
.
28.
Zhao
,
H.
,
Zhen
,
S. C.
, and
Chen
,
Y. H.
,
2013
, “
Dynamic Modeling and Simulation of Multi-Body Systems Using the Udwadia–Kalaba Theory
,”
Chin. J. Mech. Eng.
,
26
(
5
), pp.
839
850
.
29.
Chen
,
Y. H.
,
2013
, “
Hamel Paradox and Rosenberg Conjecture in Analytical Dynamics
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041001
.
30.
Moore
,
E. H.
,
1920
, “
On the Reciprocal of the General Algebraic Matrix
,”
Bull. Am. Math. Soc.
,
26
, pp.
294
395
.
31.
Penrose
,
R.
,
1955
, “
A Generalized Inverse of Matrices
,”
Proc. Camb. Philos. Soc.
,
51
, pp.
404
413
.
32.
Guo
,
Y. X.
,
Liu
,
S. X.
,
Liu
,
C.
, and
Chang
,
P.
,
2009
, “
Dynamics of Nonholonomic Systems From Variational Principles Embedded Variation Identity
,”
Phys. Lett. A
,
373
(
43
), pp.
3915
3919
.
33.
Eschrig
,
H.
,
2011
,
Topology and Geometry for Physics
,
Springer
,
Berlin
.
34.
Wang
,
P.
,
2018
, “
Conformal Invariance and Conserved Quantities of Mechanical System With Unilateral Constraints
,”
Commun. Nonlinear Sci.
,
59
, pp.
463
471
.
35.
Ferraro
,
S.
,
De Leon
,
M.
,
Marrero
,
J. C.
,
De Diego
,
D. M.
, and
Vaquero
,
M.
,
2017
, “
On the Geometry of the Hamilton–Jacobi Equation and Generating Functions
,”
Arch. Ration. Mech. Anal.
,
226
(
1
), pp.
243
302
.
36.
Garcia-Naranjo
,
L. C.
, and
Montaldi
,
J.
,
2018
, “
Gauge Momenta as Casimir Functions of Nonholonomic Systems
,”
Arch. Ration. Mech. Anal.
,
228
(
2
), pp.
563
602
.
37.
Luo
,
S. K.
,
Zhang
,
X. T.
,
He
,
J. M.
, and
Xu
,
Y. L.
,
2017
, “
On the Families of Fractional Dynamical Models
,”
Acta Mech.
,
228
(
11
), pp.
3741
3754
.
You do not currently have access to this content.