The increasing significance on the development of high-performance lithium-ion (Li-ion) batteries is calling for new battery materials, theoretical models, and simulation tools. Lithiation-induced deformation in electrodes calls attention to study the multiphysics coupling between mechanics and electrochemistry. In this paper, a simultaneous multiscale and multiphysics model to study the coupled electrochemistry and mechanics in the continuum battery cell level and the microscale particle level was developed and implemented in comsolmultiphysics. In the continuum scale, the porous electrode theory and the classical mechanics model were applied. In the microscale, the specific particle structure has been incorporated into the model. This model was demonstrated to study the effects of mechanical constraints, charging rate, and silicon/C ratio, on the electrochemical performance. This model provides a powerful tool to perform simultaneous multiscale and multiphysics design on Li-ion batteries, from the particle level to full-cell level.

References

1.
Boukamp
,
B. A.
,
Lesh
,
G. C.
, and
Huggins
,
R. A.
,
1981
, “
All-Solid Lithium Electrodes With Mixed-Conductor Matrix
,”
J. Electrochem. Soc.
,
128
(
4
), pp.
725
729
.
2.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2015
, “
Diffusion-Deformation Theory for Amorphous Silicon Anodes: The Role of Plastic Deformation on Electrochemical Performance
,”
Int. J. Solids Struct.
,
67–68
, pp.
283
296
.
3.
Wang
,
X. J.
,
Fan
,
F. F.
,
Wang
,
J. W.
,
Wang
,
H. R.
,
Tao
,
S. Y.
,
Yang
,
A.
,
Liu
,
Y.
,
Chew
,
H. B.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Xia
,
S. M.
,
2015
, “
High Damage Tolerance of Electrochemically Lithiated Silicon
,”
Nat. Commun.
,
6
, p.
8417
.
4.
Ding
,
B.
,
Li
,
X.
,
Zhang
,
X.
,
Wu
,
H.
,
Xu
,
Z.
, and
Gao
,
H.
,
2015
, “
Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,”
Nano Energy
,
18
, pp.
89
96
.
5.
Kuruba
,
R.
,
Datta
,
M. K.
,
Damodaran
,
K.
,
Jampani
,
P. H.
,
Gattu
,
B.
,
Patel
,
P. P.
,
Shanthi
,
P. M.
,
Damle
,
S.
, and
Kumta
,
P. N.
,
2015
, “
Guar Gum: Structural and Electrochemical Characterization of Natural Polymer Based Binder for Silicon–carbon Composite Rechargeable Li-Ion Battery Anodes
,”
J. Power Sources
,
298
, pp.
331
340
.
6.
Yoon
,
D.-E.
,
Hwang
,
C.
,
Kang
,
N.-R.
,
Lee
,
U.
,
Ahn
,
D.
,
Kim
,
J.-Y.
, and
Song
,
H.-K.
,
2016
, “
Dependency of Electrochemical Performances of Silicon Lithium-Ion Batteries on Glycosidic Linkages of Polysaccharide Binders
,”
ACS Appl. Mater. Interfaces
,
8
(
6
), pp.
4042
4047
.
7.
Xie
,
Y.
,
Li
,
J.
, and
Yuan
,
C.
,
2014
, “
Multiphysics Modeling of Lithium Ion Battery Capacity Fading Process With Solid-Electrolyte Interphase Growth by Elementary Reaction Kinetics
,”
J. Power Sources
,
248
, pp.
172
179
.
8.
Shi
,
D. H.
,
Xiao
,
X. R.
,
Huang
,
X. S.
, and
Kia
,
H.
,
2011
, “
Modeling Stresses in the Separator of a Pouch Lithium-Ion Cell
,”
J. Power Sources
,
196
(
19
), pp.
8129
8139
.
9.
Chan
,
C. K.
,
Peng
,
H. L.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
10.
Ma
,
H.
,
Cheng
,
F. Y.
,
Chen
,
J.
,
Zhao
,
J. Z.
,
Li
,
C. S.
,
Tao
,
Z. L.
, and
Liang
,
J.
,
2007
, “
Nest-Like Silicon Nanospheres for High-Capacity Lithium Storage
,”
Adv. Mater.
,
19
(
22
), pp.
4067
4070
.
11.
Wang
,
X. Y.
,
Wen
,
Z. Y.
,
Liu
,
Y.
, and
Wu
,
X. W.
,
2009
, “
A Novel Composite Containing Nanosized Silicon and Tin as Anode Material for Lithium Ion Batteries
,”
Electrochim. Acta
,
54
(
20
), pp.
4662
4667
.
12.
Si
,
Q.
,
Hanai
,
K.
,
Imanishi
,
N.
,
Kubo
,
M.
,
Hirano
,
A.
,
Takeda
,
Y.
, and
Yamamoto
,
O.
,
2009
, “
Highly Reversible Carbon-Nano-Silicon Composite Anodes for Lithium Rechargeable Batteries
,”
J. Power Sources
,
189
(
1
), pp.
761
765
.
13.
Park
,
M. H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
14.
Bourderau
,
S.
,
Brousse
,
T.
, and
Schleich
,
D. M.
,
1999
, “
Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries
,”
J. Power Sources
,
81
, pp.
233
236
.
15.
Yu
,
C.
,
Li
,
X.
,
Ma
,
T.
,
Rong
,
J.
,
Zhang
,
R.
,
Shaffer
,
J.
,
An
,
Y.
,
Liu
,
Q.
,
Wei
,
B. Q.
, and
Jiang
,
H.
,
2012
, “
Silicon Thin Films as Anodes for High Performance Lithium Ion Batteries With Effective Stress Relaxation
,”
Adv. Energy Mater.
,
2
(
1
), pp.
68
73
.
16.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.
17.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2011
, “
Strong Stress-Enhanced Diffusion in Amorphous Lithium Alloy Nanowire Electrodes
,”
J. Appl. Phys.
,
109
(
1
), p.
014310
.
18.
Cui
,
Z. W.
,
Gao
,
F.
, and
Qu
,
J. M.
,
2012
, “
A Finite Deformation Stress-Dependent Chemical Potential and Its Applications to Lithium Ion Batteries
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1280
1295
.
19.
Yang
,
X. G.
,
Bauer
,
C.
, and
Wang
,
C. Y.
,
2016
, “
Sinusoidal Current and Stress Evolutions in Lithium-Ion Batteries
,”
J. Power Sources
,
327
, pp.
414
422
.
20.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.
21.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, pp.
349
361
.
22.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2014
, “
A Cahn–Hilliard-Type Phase-Field Theory for Species Diffusion Coupled With Large Elastic Deformations: Application to Phase-Separating Li-Ion Electrode Materials
,”
J. Mech. Phys. Solids
,
70
, pp.
1
29
.
23.
Huang
,
S.
,
Fan
,
F.
,
Li
,
J.
,
Zhang
,
S.
, and
Zhu
,
T.
,
2013
, “
Stress Generation During Lithiation of High-Capacity Electrode Particles in Lithium Ion Batteries
,”
Acta Mater.
,
61
(
12
), pp.
4354
4364
.
24.
Qi
,
Y.
,
Xu
,
Q. C.
, and
Van der Ven
,
A.
,
2012
, “
Chemically Induced Crack Instability When Electrodes Fracture
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1838
A1843
.
25.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Insertion in Storage Particles Using a Fracture Phase Field Approach
,”
J. Mech. Phys. Solids
,
92
, pp.
313
344
.
26.
Hu
,
Y. H.
,
Zhao
,
X. H.
, and
Suo
,
Z. G.
,
2010
, “
Averting Cracks Caused by Insertion Reaction in Lithium-Ion Batteries
,”
J. Mater. Res.
,
25
(
6
), pp.
1007
1010
.
27.
DeLuca
,
C. M.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2011
, “
Effects of Electrode Particle Morphology on Stress Generation in Silicon During Lithium Insertion
,”
J. Power Sources
,
196
(
22
), pp.
9672
9681
.
28.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2012
, “
An Integrated 2-D Model of a Lithium Ion Battery: The Effect of Material Parameters and Morphology on Storage Particle Stress
,”
Comput. Mech.
,
50
(
2
), pp.
209
227
.
29.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
.
30.
Zhao
,
K. J.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p. 045004.
31.
Zhou
,
W.
,
2015
, “
Effects of External Mechanical Loading on Stress Generation During Lithiation in Li-Ion Battery Electrodes
,”
Electrochim. Acta
,
185
, pp.
28
33
.
32.
Mendoza
,
H.
,
Roberts
,
S. A.
,
Brunini
,
V. E.
, and
Grillet
,
A. M.
,
2016
, “
Mechanical and Electrochemical Response of a LiCoO2 Cathode Using Reconstructed Microstructures
,”
Electrochim. Acta
,
190
, pp.
1
15
.
33.
Kim
,
S.
,
Wee
,
J.
,
Peters
,
K.
, and
Huang
,
H. Y. S.
,
2018
, “
Multiphysics Coupling in Lithium-Ion Batteries With Reconstructed Porous Microstructures
,”
J. Phys. Chem. C
,
122
(
10
), pp.
5280
5290
.
34.
Wu
,
W.
,
Xiao
,
X.
,
Huang
,
X.
, and
Yan
,
S.
,
2014
, “
A Multiphysics Model for the in Situ Stress Analysis of the Separator in a Lithium-Ion Battery Cell
,”
Comput. Mater. Sci.
,
83
, pp.
127
136
.
35.
Liu
,
B. H.
,
Zhao
,
H.
,
Yu
,
H. L.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
.
36.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High‐Capacity Lithium‐Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
, pp.
s226
s235
.
37.
Bower
,
A. F.
, and
Guduru
,
P.
,
2012
, “
A Simple Finite Element Model of Diffusion, Finite Deformation, Plasticity and Fracture in Lithium Ion Insertion Electrode Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
4
), p.
045004
.
38.
Wu
,
W.
,
Xiao
,
X. R.
,
Wang
,
M.
, and
Huang
,
X. S.
,
2014
, “
A Microstructural Resolved Model for the Stress Analysis of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
161
(
5
), pp.
A803
A813
.
39.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2017
, “
A Multiphysics Microstructure-Resolved Model for Silicon Anode Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
66
79
.
40.
Wu
,
L.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Li Diffusion Induced Stress in FIB-SEM Reconstructed LiCoO2 Half Cell
,”
Electrochim. Acta
,
222
, pp.
814
820
.
41.
Doyle
,
C. M.
,
Fuller
,
T. F.
, and
Newman
,
J. S.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
42.
Doyle
,
C. M.
,
1995
, “
Design and Simulation of Lithium Rechargeable Batteries
,”
Ph.D. thesis
, Lawrence Berkeley National Laboratory, Berkeley, CA.https://cloudfront.escholarship.org/dist/prd/content/qt6j87z0sp/qt6j87z0sp.pdf
43.
COMSOL Multiphysics
,
2015
, “COMSOL AB,” v. 5.2, Stockholm, Sweden.
44.
Wang
,
X.
,
Singh
,
S. S.
,
Ma
,
T.
,
Lv
,
C.
,
Chawla
,
N.
, and
Jiang
,
H. Q.
,
2017
, “
Quantifying Electrochemical Reactions and Properties of Amorphous Silicon in a Conventional Lithium-Ion Battery Configuration
,”
Chem. Mater.
,
29
(
14
), pp.
5831
5840
.
45.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Harris
,
J. T.
,
Korgel
,
B. A.
,
Wang
,
C.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
,”
Nano Lett.
,
13
(
2
), pp.
758
764
.
46.
Zheng
,
W. D.
,
Shui
,
M.
,
Shu
,
J.
,
Gao
,
S.
,
Xu
,
D.
,
Chen
,
L. L.
,
Feng
,
L.
, and
Ren
,
Y. L.
,
2013
, “
GITT Studies on Oxide Cathode LiNi1/3Co1/3Mn1/3O2 Synthesized by Citric Acid Assisted High-Energy Ball Milling
,”
Bull. Mater. Sci.
,
36
(
3
), pp.
495
498
.
47.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
, and
Newman
,
J.
,
2013
, “
Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A394
A403
.
48.
Srinivasan
,
V.
, and
Newman
,
J.
,
2004
, “
Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1530
A1538
.
49.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
50.
Xu
,
J.
,
Liu
,
B.
, and
Hu
,
D.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
, p.
21829
.
51.
Xu
,
J.
,
Wang
,
L. B.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
.
52.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2016
, “
Study of Lithium Diffusivity in Amorphous Silicon Via Finite Element Analysis
,”
J. Power Sources
,
307
, pp.
77
85
.
53.
Johari
,
P.
,
Qi
,
Y.
, and
Shenoy
,
V. B.
,
2011
, “
The Mixing Mechanism During Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study
,”
Nano Lett.
,
11
(
12
), pp.
5494
5500
.
54.
Park
,
M.
,
Zhang
,
X. C.
,
Chung
,
M. D.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
.
55.
Qi
,
Y.
,
Guo
,
H. B.
,
Hector
,
L. G.
, and
Timmons
,
A.
,
2010
, “
Threefold Increase in the Young's Modulus of Graphite Negative Electrode During Lithium Intercalation
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
A558
A566
.
56.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
57.
Wen
,
J.
,
Wei
,
Y.
, and
Cheng
,
Y.-T.
,
2018
, “
Stress Evolution in Elastic-Plastic Electrodes During Electrochemical Processes: A Numerical Method and Its Applications
,”
J. Mech. Phys. Solids
,
116
, pp.
403
415
.
58.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
.
59.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano Lett.
,
11
(
7
), pp.
2962
2967
.
You do not currently have access to this content.