A comprehensive study is reported herein for the evaluation of Lagrangian functions for linear systems possessing symmetric or nonsymmetric coefficient matrices. Contrary to popular beliefs, it is shown that many coupled linear systems do not admit Lagrangian functions. In addition, Lagrangian functions generally cannot be determined by system decoupling unless further restriction such as classical damping is assumed. However, a scalar function that plays the role of a Lagrangian function can be determined for any linear system by decoupling. This generalized Lagrangian function produces the equations of motion and it contains information on system properties, yet it satisfies a modified version of the Euler–Lagrange equations. Subject to this interpretation, a solution to the inverse problem of linear Lagrangian dynamics is provided.

References

1.
Darboux
,
G.
,
1894
,
Leçons Sur La Théorie Générale Des Surfaces
, Vol.
3
,
Gauthier Villars
,
Paris, France
.
2.
Leitmann
,
G.
,
1963
, “
Some Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
30
(
4
), pp.
623
625
.
3.
Udwadia
,
F. E.
,
Cho
,
H.
, and
Leitmann
,
G.
,
2011
, “
Some Further Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011014
.
4.
He
,
J.-H.
,
2004
, “
Variational Principles for Some Nonlinear Partial Differential Equations With Variable Coefficients
,”
Chaos, Solitons Fractals
,
19
(
4
), pp.
847
851
.
5.
Musielak
,
Z. E.
,
Roy
,
D.
, and
Swift
,
L. D.
,
2008
, “
Method to Derive Lagrangian and Hamiltonian for a Nonlinear Dynamical System With Variable Coefficients
,”
Chaos, Solitons Fractals
,
38
(
3
), pp.
894
902
.
6.
Musielak
,
Z. E.
,
2008
, “
Standard and Non-Standard Lagrangians for Dissipative Dynamical Systems With Variable Coefficients
,”
J. Phys. A: Math. Theor.
,
41
(
5
), p.
055205
.
7.
Bolza
,
O.
,
1904
,
Lectures on Calculus of Variations
,
University of Chicago Press
,
Chicago, IL
.
8.
Leitmann
,
G.
,
1981
,
The Calculus of Variations and Optimal Control
,
Plenum Press
,
New York
.
9.
Saunders
,
D.
,
2010
, “
Thirty Years of the Inverse Problem in the Calculus of Variations
,”
Rep. Math. Phys.
,
66
(
1
), pp.
43
53
.
10.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
11.
Genta
,
G.
,
2009
,
Vibration Dynamics and Control
,
Springer
,
New York
.
12.
Santilli
,
R. M.
,
1978
,
Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics
,
Springer-Verlag
,
New York
, pp.
110
217
.
13.
Engels
,
E.
,
1975
, “
On the Helmholtz Conditions for the Existence of a Lagrangian Formalism
,”
Nuovo Cimento B
,
26
(
4
), pp.
481
492
.
14.
Udwadia
,
F. E.
, and
Cho
,
H.
,
2013
, “
Lagrangians for Damped Linear Multi-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041023
.
15.
Douglas
,
J.
,
1941
, “
Solution of the Inverse Problem of the Calculus of Variations
,”
Trans. Am. Math. Soc.
,
50
(
1
), pp.
71
128
.
16.
Crampin
,
M.
,
Sarlet
,
W.
,
Martinez
,
E.
,
Byrnes
,
G.
, and
Prince
,
G.
,
1994
, “
Towards a Geometrical Understanding of Douglas's Solution of the Inverse Problem of the Calculus of Variations
,”
Inverse Probl.
,
10
(
2
), pp.
245
260
.
17.
Udwadia
,
F. E.
,
2016
, “
Inverse Problem of Lagrangian Mechanics for Classically Damped Linear Multi-Degrees-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
104501
.
18.
Caughey
,
T. K.
, and
O'Kelly
,
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
583
588
.
19.
Chopra
,
A. K.
,
2017
,
Dynamics of Structures: Theory and Applications to Earthquake Engineering
, 5th ed,
Pearson
,
Hoboken, NJ
.
20.
Sestieri
,
A.
, and
Ibrahim
,
S. R.
,
1994
, “
Analysis of Errors and Approximations in the Use of Modal Coordinates
,”
J. Sound Vib.
,
177
(
2
), pp.
145
157
.
21.
Ma
,
F.
,
Iman
,
A.
, and
Morzfeld
,
M.
,
2009
, “
The Decoupling of Damped Linear Systems in Oscillatory Free Vibration
,”
J. Sound Vib.
,
324
(
1–2
), pp.
408
428
.
22.
Ma
,
F.
,
Iman
,
A.
, and
Morzfeld
,
M.
,
2010
, “
The Decoupling of Damped Linear Systems in Free or Forced Vibration
,”
J. Sound Vib.
,
329
(
15
), pp.
3182
3202
.
23.
Morzfeld
,
M.
,
Ma
,
F.
, and
Parlett
,
B. N.
,
2011
, “
The Transformation of Second-Order Linear Systems Into Independent Equations
,”
SIAM J. Appl. Math.
,
71
(
4
), pp.
1026
1043
.
24.
Prells
,
U.
, and
Friswell
,
M. I.
,
2000
, “
A Relationship Between Defective Systems and Unit-Rank Modifications of Classical Damping
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
180
183
.
25.
Friswell
,
M. I.
,
Prells
,
U.
, and
Garvey
,
S. D.
,
2005
, “
Low-Rank Damping Modifications and Defective Systems
,”
J. Sound Vib.
,
279
(
3–5
), pp.
757
774
.
26.
Kawano
,
D. T.
,
Morzfeld
,
M.
, and
Ma
,
F.
,
2011
, “
The Decoupling of Defective Linear Dynamical Systems in Free Motion
,”
J. Sound Vib.
,
330
(
21
), pp.
5165
5183
.
You do not currently have access to this content.