Lagrangians for classically damped linear multi-degrees-of-freedom dynamical systems are obtained using simple and elementary methods. Such dynamical systems are very widely used to model and analyze small amplitude vibrations in numerous naturally occurring and engineered systems. An invariant of the motion is also obtained.

References

1.
Helmholtz
,
H. V.
,
1887
, “
Uber die Physikalische Bedeutung des Princips der Kleinsten Wirkung
,”
J. Reine Angew. Math.
,
100
, pp.
137
166
.
2.
Santilli
,
R. M.
,
1987
,
Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics
,
Springer-Verlag
,
New York
, pp.
110
111
, 131–132.
3.
Udwadia
,
F. E.
, and
Cho
,
H.
,
2013
, “
Lagrangians for Damped Linear Multi-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041023
.
4.
Douglas
,
J.
,
1941
, “
Solution of the Inverse Problem of the Calculus of Variations
,”
Trans. Am. Math. Soc.
,
50
(
1
), pp.
71
128
.
5.
Hojman
,
S.
, and
Ramos
,
S.
,
1982
, “
Two-Dimensional s-Equivalent Lagrangians and Separability
,”
J. Phys. A
,
15
(
11
), pp.
3475
3480
.
6.
Mesdag
,
T.
,
Sarlet
,
W.
, and
Crampin
,
M.
,
2011
, “
The Inverse Problem for Lagrangian Systems With Certain Non-Conservative Forces
,”
Differ. Geom. Appl.
,
29
(
1
), pp.
55
72
.
7.
Leitmann
,
G.
,
1963
, “
Some Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
30
(
4
), pp.
623
625
.
8.
Udwadia
,
F. E.
,
Leitmann
,
G.
, and
Cho
,
H.
,
2011
, “
Some Further Remarks on Hamilton's Principle
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011014
.
9.
Junkins
,
J. L.
, and
Kim
,
Y.
,
1993
,
Introduction to Dynamics and Control of Flexible Structures
(AIAA Education Series),
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
10.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Upper Saddle River, NJ
.
11.
Kelly
,
G.
,
2006
,
Advanced Vibration Analysis
,
CRC Press
,
Boca Raton, FL
.
12.
Carinena
,
J. F.
, and
Ranada
,
M. F.
,
2005
, “
Lagrangian Formulation of Nonlinear Riccati Systems: One Dimensional Integrability and Two-Dimensional Superintegrability
,”
J. Math. Phys.
,
46
(
6
), p.
062703
.
13.
Caughey
,
T. K.
, and
O'Kelley
,
M. E. J.
,
1965
, “
Classical Normal Models in Damped Linear Dynamics Systems
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
583
588
.
14.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1990
,
Matrix Analysis
,
Cambridge University Press
,
New York
.
15.
Pars
,
L. A.
,
1972
,
A Treatise on Analytical Dynamics
,
Oxbow Press
,
Woodbridge, CT
.
You do not currently have access to this content.