Discrete dislocation (DD) plasticity simulations are carried out to investigate the effect of flattening and shearing of surface asperities. The asperities are chosen to have a rectangular shape to keep the contact area constant. Plasticity is simulated by nucleation, motion, and annihilation of edge dislocations. The results show that plastic flattening of large asperities facilitates subsequent plastic shearing, since it provides dislocations available to glide at lower shear stress than the nucleation strength. The effect of plastic flattening disappears for small asperities, which are harder to be sheared than the large ones, independently of preloading. An effect of asperity spacing is observed with closely spaced asperities being easier to plastically shear than isolated asperities. This effect fades when asperities are very protruding, and therefore plasticity is confined inside the asperities.

References

1.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.10.1115/1.2920243
2.
Jamari
,
J.
, and
Schipper
,
D.
,
2006
, “
Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat
,”
ASME J. Tribol.
,
128
(
2
), pp.
230
235
.10.1115/1.2164470
3.
Jamari
,
J.
,
de Rooij
,
M.
, and
Schipper
,
D.
,
2007
, “
Plastic Deterministic Contact of Rough Surfaces
,”
ASME J. Tribol.
,
129
(
4
), pp.
957
962
.10.1115/1.2768618
4.
Persson
,
B. N. J.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.10.1063/1.1388626
5.
Müser
,
M. H.
,
2008
, “
Rigorous Field-Theoretical Approach to the Contact Mechanics of Rough Elastic Solids
,”
Phys. Rev. Lett.
,
100
(
5
), p.
055504
.10.1103/PhysRevLett.100.055504
6.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
7.
Zong
,
Z.
, and
Soboyejo
,
W.
,
2005
, “
Indentation Size Effects in Face Centered Cubic Single Crystal Thin Films
,”
Mater. Sci. Eng., A
,
404
(
1–2
), pp.
281
290
.10.1016/j.msea.2005.05.075
8.
Pharr
,
G. M.
,
Herbert
,
E. G.
, and
Gao
,
Y.
,
2010
, “
The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
,”
Annu. Rev. Mater. Res.
,
40
, pp.
271
292
.10.1146/annurev-matsci-070909-104456
9.
Lou
,
J.
,
Shrotriya
,
P.
,
Buchheit
,
T.
,
Yang
,
D.
, and
Soboyejo
,
W.
,
2003
, “
Nanoindentation Study of Plasticity Length Scale Effects in LIGA Ni Microelectromechanical Systems Structures
,”
J. Mater. Res.
,
18
(
3
), pp.
719
728
.10.1557/JMR.2003.0097
10.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
11.
Sun
,
F.
,
Van der Giessen
,
E.
, and
Nicola
,
L.
,
2012
, “
Plastic Flattening of a Sinusoidal Metal Surface: A Discrete Dislocation Plasticity Study
,”
Wear
,
296
(
1–2
), pp.
672
680
.10.1016/j.wear.2012.08.007
12.
Sun
,
F.
,
Van der Giessen
,
E.
, and
Nicola
,
L.
, “
Interaction Between Neighboring Asperities During Flattening: A Discrete Dislocation Plasticity Analysis
,”
Mech. Mater.
(submitted).
13.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
,
243
(
1233
), pp.
190
205
.10.1098/rspa.1957.0214
14.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1950
,
The Friction and Lubrication of Solids—Part I
,
Clarendon
,
New York
.
15.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1964
,
The Friction and Lubrication of Solids—Part II
,
Clarendon
,
Oxford
.
16.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
5
), p.
689
.10.1088/0965-0393/3/5/008
17.
Rice
,
J. R.
,
1987
, “
Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals
,”
Mech. Mater.
,
6
(
4
), pp.
317
335
.10.1016/0167-6636(87)90030-5
18.
Balint
,
D. S.
,
Deshpande
,
V. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2006
, “
Size Effects in Uniaxial Deformation of Single and Polycrystals: A Discrete Dislocation Plasticity Analysis
,”
Modell. Simul. Mater. Sci. Eng.
,
14
(
3
), pp.
409
422
.10.1088/0965-0393/14/3/005
19.
Dikken
,
R.-J.
,
Van der Giessen
,
E.
, and
Nicola
,
L.
, “
Plastic Shear Response of a Single Asperity: A Discrete Dislocation Plasticity Analysis
,” Phil. Mag. (submitted).
You do not currently have access to this content.