Although quaternions are singularity-free in modeling and analysis of rigid bodies in three-dimensional motion, description of torques may lead to unbounded response of a quaternion-based model. This paper gives theorems on the conditions of torque-induced singularity in four coordinate systems: inertial frame, body frame, Euler basis, and dual Euler basis. According to the theorems, torques applied in an inertial frame or a body frame or a Euler basis will never cause unbounded motion; torques applied in a dual Euler basis, however, may lead to unbounded motion.
Issue Section:
Research Papers
References
1.
Kuipers
, J. B.
, 1999
, Quaternions and Rotation Sequences
, Princeton University Press
, Princeton, NJ
.2.
Shuster
, M. D.
, 1993
, “A Survey of Attitude Representations
,” J. Astronaut. Sci.
, 41
(4
), pp. 439
–517
.3.
Choi
, H.
, and Yang
, B.
, 2012
, “On Singularity of Rigid-Body Dynamics Using Quaternion-Based Models
,” ASME J. Appl. Mech.
, 79
(2
), p. 024502
.10.1115/1.40055754.
O'Reilly
, O. M.
, 2012
, private communication.5.
O'Reilly
, O. M.
, 2007
, “The Dual Euler Basis: Constraints, Potentials, and Lagrange's Equations in Rigid Body Dynamics
,” ASME J. Appl. Mech.
, 74
(2
), pp. 256
–258
.10.1115/1.21902316.
Liu
, D.
, Xia
, Q.
, and Wen
, Q.
, 2010
, “Attitude Solution of Vertical Penetrative Trajectory Based on Quaternion
,” CMCE 2010
, Vol. 1
, pp. 293
–296
.10.1109/CMCE.2010.56104947.
Shabana
, A. A.
, 2005
, Dynamics of Multibody Systems
, Cambridge University Press
, New York
.8.
Senan
, N. A. F.
, and O'Reilly
, O. M.
, 2009
, “On the Use of Quaternions and Euler Rodrigues Symmetric Parameters With Moments and Moment Potentials
,” Int. J. Eng. Sci.
, 47
(4
), pp. 595
–609
.10.1016/j.ijengsci.2008.12.008Copyright © 2013 by ASME
You do not currently have access to this content.