Although quaternions are singularity-free in modeling and analysis of rigid bodies in three-dimensional motion, description of torques may lead to unbounded response of a quaternion-based model. This paper gives theorems on the conditions of torque-induced singularity in four coordinate systems: inertial frame, body frame, Euler basis, and dual Euler basis. According to the theorems, torques applied in an inertial frame or a body frame or a Euler basis will never cause unbounded motion; torques applied in a dual Euler basis, however, may lead to unbounded motion.

References

1.
Kuipers
,
J. B.
,
1999
,
Quaternions and Rotation Sequences
,
Princeton University Press
,
Princeton, NJ
.
2.
Shuster
,
M. D.
,
1993
, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
,
41
(
4
), pp.
439
517
.
3.
Choi
,
H.
, and
Yang
,
B.
,
2012
, “
On Singularity of Rigid-Body Dynamics Using Quaternion-Based Models
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
024502
.10.1115/1.4005575
4.
O'Reilly
,
O. M.
,
2012
, private communication.
5.
O'Reilly
,
O. M.
,
2007
, “
The Dual Euler Basis: Constraints, Potentials, and Lagrange's Equations in Rigid Body Dynamics
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
256
258
.10.1115/1.2190231
6.
Liu
,
D.
,
Xia
,
Q.
, and
Wen
,
Q.
,
2010
, “
Attitude Solution of Vertical Penetrative Trajectory Based on Quaternion
,”
CMCE 2010
, Vol.
1
, pp.
293
296
.10.1109/CMCE.2010.5610494
7.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
8.
Senan
,
N. A. F.
, and
O'Reilly
,
O. M.
,
2009
, “
On the Use of Quaternions and Euler Rodrigues Symmetric Parameters With Moments and Moment Potentials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
595
609
.10.1016/j.ijengsci.2008.12.008
You do not currently have access to this content.