The main objective of this paper is to study the transient magneto-thermoviscoelastic stresses in a nonhomogeneous anisotropic solid placed in a constant primary magnetic field acting in the direction of the and rotating about it with a constant angular velocity. The system of fundamental equations is solved by means of a dual-reciprocity boundary element method (DRBEM). The results indicate that the effects of inhomogeneity and rotation are very pronounced.
Issue Section:
Research Papers
References
1.
Abd-Alla
, A. M.
, Abd-Alla
, A. N.
, and Zeidan
, N. A.
, 2000, “Thermal Stresses in a Non-Homogeneous Orthotropic Elastic Multilayered Cylinder
,” J. Therm. Stresses
, 23
(5
), pp. 413
–428
.2.
Clements
, D. L.
, 1973, “Thermal Stress in Anisotropic Elastic Half-Space
,” SIAM J. Appl. Math.
, 24
(3
), pp. 332
–337
.3.
El-Naggar
, A. M.
, Abd-Alla
, A. M.
, and Fahmy
, M. A.
, 2004, “The Propagation of Thermal Stresses in an Infinite Elastic Slab
,” Appl. Math. Comput.
, 157
(2
), pp. 307
–312
.4.
El-Naggar
, A. M.
, Abd-Alla
, A. M.
, Fahmy
, M. A.
, and Ahmed
, S. M.
, 2002, “Thermal Stresses in a Rotating Non-Homogeneous Orthotropic Hollow Cylinder
,” Heat Mass Transfer
, 39
(1
), pp. 41
–46
.5.
Mansur
, W. J.
, and Brebbia
, C. A.
, 1983, “Transient Elastodynamics Using a Time-Stepping Technique
,” Boundary Elements
, C. A.
Brebbia
, T.
Futagami
, and M.
Tanaka
, eds., Springer-Verlag
, Berlin
, pp. 677
–698
.6.
Antes
, H.
, 1985, “A Boundary Element Procedure for Transient Wave Propagations in Two Dimensional Isotropic Elastic Media
,” Finite Elem. Anal. Des.
, 1
(4
), pp. 313
–322
.7.
Domínguez
, J.
, 1993, Boundary Elements in Dynamics
, Computational Mechanics Publication
, Southampton, UK
.8.
Schanz
, M.
, 2001, Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach
, Springer-Verlag
, Berlin
.9.
Fahmy
, M. A.
, 2011, “Influence of Inhomogeneity and Initial Stress on the Transient Magneto-Thermo-Visco-Elastic Stress Waves in an Anisotropic Solid
,” World J. Mech.
, 1
(5
), pp. 256
–265
.10.
Canelas
, A.
, and Sensale
, B.
, 2010, “A Boundary Knot Method for Harmonic Elastic and Viscoelastic Problems Using Single-Domain Approach
,” Eng. Anal. Boundary Elem.
, 34
(10
), pp. 845
–855
.11.
Davì
, G.
, and Milazzo
, A.
, 2011, “A Regular Variational Boundary Model for Free Vibrations of Magneto-Electro-Elastic Structures
,” Eng. Anal. Boundary Elem.
, 35
(3
), pp. 303
–312
.12.
Fahmy
, M. A.
, and El-Shahat
, T. M.
, 2008, “The Effect of Initial Stress and Inhomogeneity on the Thermoelastic Stresses in a Rotating Anisotropic Solid
,” Arch. Appl. Mech.
, 78
(6
), pp. 431
–442
.13.
Hou
, P. F.
, He
, S.
, and Chen
, C. P.
, 2011, “2D General Solution and Fundamental Solution for Orthotropic Thermoelastic Materials
,” Eng. Anal. Boundary Elem.
, 35
(1
), pp. 56
–60
.14.
Karlis
, G. F.
, Charalambopoulos
, A.
, and Polyzos
, D.
, 2010, “An Advanced Boundary Element Method for Solving 2D and 3D Static Problems in Mindlin’s Strain-Gradient Theory of Elasticity
,” Int. J. Numer. Methods Eng.
, 83
(11
), pp. 1407
–1427
.15.
Matsumoto
, T.
, Guzik
, A.
, and Tanaka
, M.
, 2005, “A Boundary Element Method for Analysis of Thermoelastic Deformations in Materials With Temperature Dependent Properties
,” Int. J. Numer. Methods Eng.
, 64
(11
), pp. 1432
–1458
.16.
Mohammadi
, M.
, Hematiyan
, M. R.
, and Marin
, L.
, 2010, “Boundary Element Analysis of Nonlinear Transient Heat Conduction Problems Involving Non-Homogenous and Nonlinear Heat Sources Using Time-Dependent Fundamental Solutions
,” Eng. Anal. Boundary Elem.
, 34
(7
), pp. 655
–665
.17.
Zhang
, X. H.
, Ouyang
, J.
, and Zhang
, L.
, 2010, “Characteristic Based Split (CBS) Meshfree Method Modeling for Viscoelastic Flow
,” Eng. Anal. Boundary Elem.
, 34
(2
), pp. 163
–172
.18.
Brebbia
, C. A.
, and Nardini
, D.
, 1983, “Dynamic Analysis in Solid Mechanics by an Alternative Boundary Element Procedure
,” Int. J. Soil Dynam. Earthquake Eng.
, 2
(4
), pp. 228
–233
.19.
Ang
, W. T.
, Clements
, D. L.
, and Vahdati
, N.
, 2003, “A Dual-Reciprocity Boundary Element Method for a Class of Elliptic Boundary Value Problems for Non-Homogeneous Anisotropic Media
,” Eng. Anal. Boundary Elem.
, 27
(1
), pp. 49
–55
.20.
Divo
, E. A.
, and Kassab
, A. J.
, 2003, Boundary Element Methods for Heat Conduction: With Applications in Non-Homogeneous Media
, WIT, Southampton
, UK.
21.
Fahmy
, M. A.
, 2012, “Numerical Modeling of Transient Magneto-Thermo-Viscoelastic Waves in a Rotating Nonhomogeneous Anisotropic Solid Under Initial Stress
,” Int. J. Model. Simulat. Sci. Comput.
, 3
(2
), p. 125002
.22.
Gaul
, L.
, Kögl
, M.
, and Wagner
, M.
, 2003, Boundary Element Methods for Engineers and Scientists
, Springer-Verlag
, Berlin
.23.
Partridge
, P. W.
, Brebbia
, C. A.
, and Wrobel
, L. C.
, 1992, The Dual Reciprocity Boundary Element Method
, Computational Mechanics Publications
, Southampton, UK
.24.
Wrobel
, L. C.
, and Brebbia
, C. A.
, 1987, “The Dual Reciprocity Boundary Element Formulation for Nonlinear Diffusion Problems
,” Comput. Methods Appl. Mech. Eng.
, 65
(2
), pp. 147
–164
.25.
Yun
, B. I.
, and Ang
, W. T.
, 2010, “A Dual-Reciprocity Boundary Element Approach for Axisymmetric Nonlinear Time-Dependent Heat Conduction in a Non-Homogeneous Solid
,” Eng. Anal. Boundary Elem.
, 34
(8
), pp. 697
–706
.26.
Zhang
, Y.
, and Zhu
, S.
, 1994, “On the Choice of Interpolation Functions Used in the Dual-Reciprocity Boundary-Element Method
,” Eng. Anal. Boundary Elem.
, 13
(4
), pp. 387
–396
.27.
Abd-Alla
, A. M.
, El-Naggar
, A. M.
, and Fahmy
, M. A.
, 2003, “Magneto-Thermoelastic Problem in Non-Homogeneous Isotropic Cylinder
,” Heat Mass Transfer
, 39
(7
), pp. 625
–629
.28.
Higuchi
, M.
, Kawamura
, R.
, Tanigawa
, Y.
, and Adachi
, T.
, 2010, “Magneto-Thermo-Elastic Stresses Induced by a Transient Magnetic Field in a Conducting Hollow Circular Cylinder
,” J. Therm. Stresses
, 33
(8
), pp. 775
–798
.29.
Lee
, J. L.
, and Lin
, C. B.
, 2010, “The Magnetic Viscous Damping Effect on the Natural Frequency of a Beam Plate Subject to an In-Plane Magnetic Field
,” ASME J. Appl. Mech.
, 77
(1
), p. 11014
.30.
Nayfeh
, A.
, and Nasser
, S. N.
, 1972, “Electromagneto-Thermoelastic Plane Waves in Solids With Thermal Relaxation
,” ASME J. Appl. Mech.
, 39
(1
), pp. 108
–113
.31.
Niraula
, O. P.
, and Noda
, N.
, 2010, “Derivation of Material Constants in Non-Linear Electro-Magneto-Thermo-Elasticity
,” J. Therm. Stresses
, 33
(11
), pp. 1011
–1034
.32.
Roychoudhuri
, S. K.
, and Banerjee
, S.
, 1998, “Magneto-Thermoelastic Interactions in an Infinite Viscoelastic Cylinder of Temperature Dependent Material Subjected to a Periodic Loading
,” Int. J. Eng. Sci.
, 36
(5–6
), pp. 635
–643
.33.
Brebbia
, C. A.
, Telles
, J. C. F.
, and Wrobel
, L.
, 1984, Boundary Element Techniques in Engineering
, Springer-Verlag
, New York
.34.
Partridge
, P. W.
, and Wrobel
, L. C.
, 1990, “The Dual Reciprocity Boundary Element Method for Spontaneous Ignition
,” Int. J. Numer. Methods Eng.
, 30
(5
), pp. 953
–963
.35.
Yamada
, T.
, and Wrobel
, L. C.
, 1993, “A New Approach to Magnetic Field Analysis by the Dual Reciprocity Boundary Element Method
,” Int. J. Numer. Methods Eng.
, 36
(12
), pp. 2073
–2085
.36.
Albuquerque
, E. L.
, Sollero
, P.
, and Aliabadi
, M. H.
, 2004, “Dual Boundary Element Method for Anisotropic Dynamic Fracture Mechanics
,” Int. J. Numer. Methods Eng.
, 59
(9
), pp. 1187
–1205
.37.
Bozkaya
, C.
, 2008, “A Coupled Numerical Scheme of Dual Reciprocity BEM With DQM for the Transient Elastodynamic Problems
,” Int. J. Numer. Methods Eng.
, 76
(7
), pp. 1108
–1122
.38.
Bulgakov
, V.
, Šarler
, B.
, and Kuhn
, G.
, 1998, “Iterative Solution of Systems of Equations in the Dual Reciprocity Boundary Element Method for the Diffusion Equation
,” Int. J. Numer. Methods Eng.
, 43
(4
), pp. 713
–732
.39.
Baiz
, P. M.
, and Aliabadi
, M. H.
, 2010, “Post Buckling Analysis of Shear Deformable Shallow Shells by the Boundary Element Method
,” Int. J. Numer. Methods Eng.
, 84
(4
), pp. 379
–433
.40.
Benedetti
, I.
, and Aliabadi
, M. H.
, 2010, “A Fast Hierarchical Dual Boundary Element Method for Three-Dimensional Elastodynamic Crack Problems
,” Int. J. Numer. Methods Eng.
, 84
(9
), pp. 1038
–1067
.41.
Gaul
, L.
, and Kogl
, M.
, “A Boundary Element Method For Anisotropic Coupled Thermoelasticity
,” Arch. Appl. Mech.
, 73
(5–6)
, pp. 377
–398
.42.
Cho
, H. A.
, Golberg
, M. A.
, Muleshkov
, A. S.
, and Li
, X.
, 2004, “Trefftz Methods for Time Dependent Partial Differential Equations
,” CMC – Comput., Mater., Continua
, 1
(1
), pp. 1
–37
.43.
Guiggiani
, M.
, and Gigante
, A.
, 1990, “A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method
,” ASME J. Appl. Mech.
, 57
(4
), pp. 906
–915
.44.
Mantič
, V.
, 1993, “A New Formula for the C-Matrix in the Somigliana Identity
,” J. Elast.
, 33
, pp. 191
–201
.45.
Golub
, G. H.
, and Van Loan
, C. F.
, 1983, Matrix Computations
, North Oxford Academic
, Oxford
.46.
Bathe
, K. J.
, 1996, Finite Element Procedures
, Prentice-Hall
, Englewood Cliffs, NJ
.47.
Abd-Alla
, A. M.
, Fahmy
, M. A.
, and El-Shahat
, T. M.
, 2008, “Magneto-Thermo-Elastic Problem of a Rotating Non-Homogeneous Anisotropic Solid Cylinder
,” Arch. Appl. Mech.
, 78
(2
), pp. 135
–148
.48.
Fahmy
, M. A.
, 2012, “A Time-Stepping DRBEM for Magneto-Thermo-Viscoelastic Interactions in a Rotating Nonhomogeneous Anisotropic Solid
,” Int. J. Appl. Mech.
, 3
(4
), pp. 711
–734
.49.
Fahmy
, M. A.
, 2012, “A Time-Stepping DRBEM for the Transient Magneto-Thermo-Visco-Elastic Stresses in a Rotating Non-Homogeneous Anisotropic Solid
,” Eng. Anal. Boundary Elem.
, 36
(3
), pp. 335
–345
.50.
Fahmy
, M. A.
, 2008, “Thermoelastic Stresses in a Rotating Non-Homogeneous Anisotropic Body
,” Numer. Heat Transfer, Part A
, 53
(9
), pp. 1001
–1011
.51.
Sladek
, J.
, Sladek
, V.
, Solek
, P.
, Tan
, C. L.
, and Zhang
, Ch
., 2009, “Two- and Three-Dimensional Transient Thermoelastic Analysis by the MLPG Method
,” Comput. Model. Eng. Sci.
, 47
(1
), pp. 61
–95
.52.
Sladek
, J.
, Sladek
, V.
, Solek
, P.
, and Zhang
, Ch
., 2010, “Fracture Analysis in Continuously Nonhomogeneous Magneto-Electro-Elastic Solids Under a Thermal Load by the MLPG
,” Int. J. Solids Struct.
, 47
(10
), pp. 1381
–1391
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.