In this paper, a low dimensional model is constructed to approximate the nonlinear ferroelastic dynamics involving mechanically and thermally-induced martensite transformations. The dynamics of the first order martensite transformation is first modeled by a set of nonlinear coupled partial differential equations (PDEs), which is obtained by using the modified Ginzburg–Landau theory. The Chebyshev collocation method is employed for the numerical analysis of the PDE model. An extended proper orthogonal decomposition is then carried out to construct a set of empirical orthogonal eigenmodes of the dynamics, with which system characteristics can be optimally approximated (in a specified sense) within a range of different temperatures and under various mechanical and thermal loadings. The performance of the low dimensional model is analyzed numerically. Results on the dynamics involving mechanically and thermally-induced phase transformations and the hysteresis effects induced by such transformations are presented.

1.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2009, “
Control of Coupled Hysteretic Dynamics of Ferroelectric Materials With a Landau-Type Differential Model and Feedback Linearization
,”
Smart Mater. Struct.
0964-1726,
18
(
7
), p.
074011
.
2.
Banks
,
H. T.
,
Smith
,
R. C.
, and
Wang
,
Y.
, 1996,
Smart Material Structures: Modelling, Estimation and Control
,
Wiley
,
Masson, Paris
.
3.
Hu
,
M.
,
Du
,
H.
, and
Ling
,
S. F.
, 2000, “
Motion Control of an Electrostrictive Actuator
,”
Proc. SPIE
0277-786X,
4235
, pp.
321
327
.
4.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2007, “
Model Reduction Applied to Square to Rectangular Martensitic Transformations Using Proper Orthogonal Decomposition
,”
Appl. Numer. Math.
0168-9274,
57
(
5–7
), pp.
510
520
.
5.
Melnik
,
R. V. N.
, 1997, “
The Stability Condition and Energy Estimate for Nonstationary Problems of Coupled Electroelasticity
,”
Math. Mech. Solids
1081-2865,
2
(
2
), pp.
153
180
.
6.
Melnik
,
R. V. N.
, and
Melnik
,
K. N.
, 2000, “
Modelling Dynamics of Piezoelectric Solids in the Two-Dimensional Case
,”
Appl. Math. Model.
0307-904X,
24
(
3
), pp.
147
163
.
7.
Melnik
,
R. V. N.
, 2001, “
Computational Analysis of Coupled Physical Fields in Piezothermoelastic Media
,”
Comput. Phys. Commun.
0010-4655,
142
(
1–3
), pp.
231
237
.
8.
Melnik
,
R. V. N.
, and
Roberts
,
A. J.
, 2002, “
Computational Models for Materials With Shape Memory: Towards a Systematic Description of Coupled Phenomena
,”
Computational Science—ICCS 2002, PT II
(
Lecture Notes in Computer Science
), Vol.
2330
,
Springer
,
Amsterdam
, pp.
490
499
.
9.
Melnik
,
R. V. N.
, 2003, “
Modelling Coupled Dynamics: Piezoelectric Elements Under Changing Temperature Conditions
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
(
1
), pp.
83
92
.
10.
Melnik
,
R. V. N.
, and
Roberts
,
A.
, 2004, “
Computational Models for Multi-Scale Coupled Dynamic Problems
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
20
(
3
), pp.
453
464
.
11.
Yang
,
X. D.
, and
Melnik
,
R. V. N.
, 2009, “
Effect of Internal Viscosity of Polymeric Fluids Under Strong Extensional Flows
,”
Chin. J. Polym. Sci.
0256-7679,
27
(
2
), pp.
189
193
.
12.
Melnik
,
R. V. N.
, and
Povitsky
,
A.
, 2004, “
Wave Phenomena in Physics and Engineering: New Models, Algorithms, and Applications
,”
Math. Comput. Simul.
0378-4754,
65
(
4–5
), pp.
299
302
.
13.
Kamath
,
H.
,
Willatzen
,
M.
, and
Melnik
,
R. V. N.
, 2006, “
Vibration of Piezoelectric Elements Surrounded by Fluid Media
,”
Ultrasonics
0041-624X,
44
(
1
), pp.
64
72
.
14.
Melnik
,
R. V. N.
,
Roberts
,
A. J.
, and
Thomas
,
K. A.
, 2000, “
Computing Dynamics of Copper-Based SMA Via Centre Manifold Reduction of 3D Models
,”
Comput. Mater. Sci.
0927-0256,
18
(
3–4
), pp.
255
268
.
15.
Melnik
,
R. V. N.
, and
Roberts
,
A. J.
, 2001, “
Thermomechanical Behaviour of Thermoelectric SMA Actuators
,”
J. Phys. IV
1155-4339,
11
, pp.
Pr8
-515–Pr8-
520
.
16.
Mahapatra
,
D. R.
, and
Melnik
,
R.
, 2005, “
Three-Dimensional Mathematical Models of Phase Transformation Kinetics in Shape Memory Alloys
,”
Dynamics of Continuous Discrete and Impulsive Systems Series B-Applications & Algorithms
,
2
, pp.
557
562
.
17.
Wang
,
L.
, and
Melnik
,
R.
, 2006, “
Dynamics of Shape Memory Alloys Patches With Mechanically Induced Transformations
,”
Discrete Contin. Dyn. Syst.
1078-0947,
15
(
4
), pp.
1237
1252
.
18.
Mahapatra
,
D. R.
, and
Melnik
,
R. V. N.
, 2006, “
Numerical Simulation of Phase Transformations in Shape Memory Alloy Thin Films
,”
Computational Science-ICCS 2006
, Vol.
3992
, pp.
114
121
.
19.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2006, “
Two-Dimensional Analysis of Shape Memory Alloys Under Small Loadings
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
4
(
2
), pp.
291
304
.
20.
Mahapatra
,
D. R.
, and
Melnik
,
R. V. N.
, 2006, “
Finite Element Analysis of Phase Transformation Dynamics in Shape Memory Alloys With a Consistent Landau-Ginzburg Free Energy Model
,”
Mech. Adv. Mater. Structures
,
13
(
6
), pp.
443
455
.
21.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2006, “
Differential-Algebraic Approach to Coupled Problems of Dynamic Thermoelasticity
,”
Appl. Math. Mech.
0253-4827,
27
(
9
), pp.
1185
1196
.
22.
Mahapatra
,
D. R.
, and
Melnik
,
R. V. N.
, 2007, “
Finite Element Modelling and Simulation of Phase Transformations in Shape Memory Alloy Thin Films
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
5
(
1
), pp.
65
71
.
23.
Mahapatra
,
D. R.
, and
Melnik
,
R. V. N.
, 2007, “
Finite Element Approach to Modelling Evolution of 3D Shape Memory Materials
,”
Math. Comput. Simul.
0378-4754,
76
(
1–3
), pp.
141
148
.
24.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2007, “
Thermo-Mechanical Wave Propagations in Shape Memory Alloy Rod With Phase Transformations
,”
Mech. Adv. Mater. Structures
,
14
(
8
), pp.
665
676
.
25.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2008, “
Simulation of Phase Combinations in Shape Memory Alloys Patches by Hybrid Optimization Methods
,”
Appl. Numer. Math.
0168-9274,
58
(
4
), pp.
511
524
.
26.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2008, “
Modifying Macroscale Variant Combinations in a Two-Dimensional Structure Using Mechanical Loadings During Thermally Induced Transformation
,”
Mater. Sci. Eng., A
0921-5093,
481-482
, pp.
190
193
.
27.
Melnik
,
R. V. N.
,
Wang
,
L.
,
Matus
,
P.
, and
Rybak
,
L.
, 2003, “
Computational Aspects of Conservative Difference Schemes for Shape Memory Alloys Applications
,”
Lect. Notes Comput. Sci.
0302-9743,
2668
, pp.
791
800
.
28.
Matus
,
P.
,
Melnik
,
R.
,
Wang
,
L.
, and
Rybak
,
I.
, 2004, “
Application of Fully Conservative Schemes in Nonlinear Thermoelasticity: Modelling Shape Memory Materials. Mathematics and Computers in Simulation
,”
Math. Comput. Simul.
0378-4754,
65
(
4–5
), pp.
489
509
.
29.
Fattorini
,
H. O.
, 1999,
Infinite Dimensional Optimization and Control Theory
,
Cambridge University Press
,
Cambridge, England
.
30.
Teman
,
R.
, 1998,
Infinite Dimensional Dynamical Systems in Mechanics and Physics
,
Springer-Verlag
,
New York
.
31.
Melnik
,
R. V. N.
, and
Jenkins
,
D. R.
, 2002, “
On Computational Control of Flow in Airblast Atomisers for Pulmonary Drug Delivery
,”
Int. J. Pharm.
0378-5173,
239
(
1–2
), pp.
23
35
.
32.
Wu
,
Z.
,
Melnik
,
R. V. N.
, and
Borup
,
F.
, 2007, “
Model-Based Analysis and Simulation of Airflow Control Systems of Ventilation Units in Building Environments
,”
Build. Environ.
0360-1323,
42
(
1
), pp.
203
217
.
33.
Melnik
,
R. V. N.
, 2003, “
Deterministic and Stochastic Dynamics With Hyperbolic HJB-Type Equations
,”
Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal.
1201-3390,
10
(
1–3
), pp.
317
330
.
34.
Melnik
,
R. V. N.
, 2008, “
Markov Chain Network Training and Conservation Law Approximations: Linking Microscopic and Macroscopic Models for Evolution
,”
Appl. Math. Comput.
0096-3003,
199
(
1
), pp.
315
333
.
35.
Melnik
,
R. V. N.
,
Roberts
,
A. J.
, and
Thomas
,
K. A.
, 2001, “
Coupled Thermomechanical Dynamics of Phase Transformations in Shape Memory Alloys and Related Hysteresis Phenomena
,”
Mech. Res. Commun.
0093-6413,
28
(
6
), pp.
637
651
.
36.
Melnik
,
R. V. N.
,
Roberts
,
A. J.
, and
Thomas
,
K. A.
, 2002, “
Phase Transitions in Shape Memory Alloys With Hyperbolic Heat Conduction and Differential Algebraic Models
,”
Comput. Mech.
0178-7675,
29
(
1
), pp.
16
26
.
37.
Melnik
,
R. V. N.
, and
Robert
,
A. J.
, 2003, “
Modelling Nonlinear Dynamics of Shape Memory Alloys With Approximate Models of Coupled Thermoelasticity
,”
Z. Angew. Math. Mech.
0044-2267,
83
(
2
), pp.
93
104
.
38.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2005, “
Simulation of Nonlinear Thermomechanical Waves With an Empirical Low Dimensional Model
,”
Lect. Notes Comput. Sci.
0302-9743,
3514
, pp.
884
891
.
39.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, England
.
40.
Rowley
,
C. W.
, and
Marsden
,
J. E.
, 2000, “
Reconstruction Equations and Karhunen–Loève Expansions for Systems With Symmetry
,”
Physica D
0167-2789,
142
, pp.
1
19
.
41.
Falk
,
F.
, and
Konopka
,
P.
, 1990, “
Three-Dimensional Landau Theory Describing the Martensitic Phase Transformation of Shape Memory Alloys
,”
J. Phys.: Condens. Matter
0953-8984,
2
, pp.
61
77
.
42.
Melnik
,
R.
, and
Mahapatra
,
R.
, 2007, “
Coupled Effects in Quantum Dot Nanostructures With Nonlinear Strain and Bridging Modelling Scales
,”
Comput. Struct.
0045-7949,
85
(
11–14
), pp.
698
711
.
43.
Melnik
,
R. V. N.
, 2001, “
Discrete Models of Coupled Dynamic Thermoelasticity for Stress-Temperature Formulations
,”
Appl. Math. Comput.
0096-3003,
122
(
1
), pp.
107
132
.
44.
Strunin
,
D. V.
,
Melnik
,
R. V. N.
, and
Roberts
,
A. J.
, 2001, “
Coupled Thermomechanical Waves in Hyperbolic Thermoelasticity
,”
J. Therm. Stresses
0149-5739,
24
(
2
), pp.
121
140
.
45.
Melnik
,
R. V. N.
,
Strunin
,
D. V.
, and
Roberts
,
A. J.
, 2005, “
Nonlinear Analysis of Rubber-Based Polymeric Materials With Thermal Relaxation Models
,”
Numer. Heat Transfer, Part A
1040-7782,
47
(
6
), pp.
549
569
.
46.
Wang
,
H.
,
Dai
,
W.
,
Nassar
,
R.
, and
Melnik
,
R.
, 2006, “
A Finite Difference Method For Studying Thermal Deformation in a Thin Film Exposed to Ultrashort-Pulsed Lasers
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
15–16
), pp.
2712
2723
.
47.
Wang
,
H. J.
,
Dai
,
W.
, and
Melnik
,
R.
, 2006, “
A Finite Difference Method for Studying Thermal Deformation in a Double-Layered Thin Film Exposed to Ultrashort Pulsed Lasers
,”
Int. J. Therm. Sci.
1290-0729,
45
(
12
), pp.
1179
1196
.
48.
Zhang
,
S. Y.
,
Dai
,
W.
,
Wang
,
H.
, and
Melnik
,
R. V. N.
2008, “
A Finite Difference Method for Studying Thermal Deformation in a 3D Thin Film Exposed to Ultrashort Pulsed Lasers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
7–8
), pp.
1979
1995
.
49.
Lassen
,
B.
,
Willatzen
,
M.
,
Melnik
,
R.
, and
Lew Yan Voon
,
L. C.
, 2005, “
A General Treatment of Deformation Effects in Hamiltonians for Inhomogeneous Crystalline Materials
,”
J. Math. Phys.
0022-2488,
46
(
11
), pp.
112102
.
50.
Kournytskyi
,
T.
,
Melnik
,
R. V. N.
, and
Gachkevich
,
A.
, 2005, “
Thermal Behavior of Absorbing and Scattering Glass Media Containing Molecular Water Impurity
,”
Int. J. Therm. Sci.
1290-0729,
44
(
2
), pp.
107
114
.
51.
Melnik
,
R. V. N.
, and
Povitsky
,
A.
, 2006, “
A Special Issue on Modelling Coupled and Transport Phenomena in Nanotechnology
,”
J. Comput. Theor. Nanosci.
1546-1955,
3
(
4
), pp.
i
ii
.
52.
Patil
,
S. R.
, and
Melnik
,
R. V. N.
, 2009, “
Thermopiezoelectric Effects on Optoelectronic Properties of CdTe/ZnTe Quantum Wires
,”
Phys. Status Solidi A
0031-8965,
206
(
5
), pp.
960
964
.
53.
Patil
,
S. R.
, and
Melnik
,
R. V. N.
, 2009, “
Coupled Electromechanical Effects in II-VI Group Finite Length Semiconductor Nanowires
,”
J. Phys. D
0022-3727,
42
(
14
), p.
145113
.
54.
Patil
,
S. R.
, and
Melnik
,
R. V. N.
, 2009, “
Thermoelectromechanical Effects in Quantum Dots
,”
Nanotechnology
0957-4484,
20
(
12
), p.
125402
.
55.
Wang
,
L.
,
Liu
,
R.
, and
Melnik
,
R. V. N
, 2009, “
Modeling Large Reversible Electric-Field-Induced Strain in Ferroelectric Materials Using 90 Orientation Switching
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
52
(
1
), pp.
141
147
.
56.
Bubner
,
N.
, 1996, “
Landau-Ginzburg Model for a Deformation-Driven Experiment on Shape Memory Alloys
,”
Continuum Mech. Thermodyn.
0935-1175,
8
, pp.
293
308
.
57.
Mahapatra
,
D. R.
, and
Melnik
,
R.
, 2005, “
A Dynamic Model for Phase Transformations in 3D Samples of Shape Memory Alloys
,”
Computational Science-ICCS 2005, Pt 3
(
Lecture Series in Computer Science
), Vol.
3516
, pp.
25
32
.
58.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2004, “
Dynamics of Shape Memory Alloys Patches
,”
Mater. Sci. Eng., A
0921-5093,
378
(
1–2
), pp.
470
474
.
59.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2007, “
Finite Volume Analysis of Nonlinear Thermo-Mechanical Dynamics of Shape Memory Alloys
,”
Heat Mass Transfer
0947-7411,
43
(
6
), pp.
535
546
.
60.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2006, “
Mechanically Induced Phase Combination in Shape Memory Alloys by Chebyshev Collocation Methods
,”
Mater. Sci. Eng., A
0921-5093,
438-440
, pp.
427
430
.
61.
Wang
,
L. X.
, and
Melnik
,
R. V. N.
, 2007, “
Numerical Model for Vibration Damping Resulting From the First-Order Phase Transformations
,”
Appl. Math. Model.
0307-904X,
31
(
9
), pp.
2008
2018
.
62.
Yang
,
X. D.
, and
Melnik
,
R. V. N.
, 2007, “
Effect of Internal Viscosity on Brownian Dynamics of DNA Molecules in Shear Flow
,”
Comput. Biol. Chem.
1476-9271,
31
(
2
), pp.
110
114
.
63.
Melnik
,
R. V. N.
, and
Melnik
,
K. N.
, 1998, “
A Note on the Class of Weakly Coupled Problems of Non-Stationary Piezoelectricity
,”
Commun. Numer. Methods Eng.
1069-8299,
14
(
9
), pp.
839
847
.
64.
Melnik
,
R. V. N.
, 1998, “
Convergence of the Operator-Difference Scheme to Generalized Solutions of a Coupled Field Theory Problem
,”
Journal of Difference Equations and Applications
,
4
(
2
), pp.
185
212
.
65.
Melnik
,
R. V. N.
, 2000, “
Generalised Solutions, Discrete Models and Energy Estimates for a 2D Problem of Coupled Field Theory
,”
Appl. Math. Comput.
0096-3003,
107
(
1
), pp.
27
55
.
66.
Melnik
,
R. V. N.
, 2003, “
Numerical Analysis of Dynamic Characteristics of Coupled Piezoelectric Systems in Acoustic Media
,”
Math. Comput. Simul.
0378-4754,
61
(
3–6
), pp.
497
507
.
67.
Willatzen
,
M.
,
Melnik
,
R. V. N.
,
Galeriu
,
C.
, and
Lew Yan Voon
,
L. C.
, 2003, “
Finite Element Analysis of Nanowire Superlattice Structures
,”
Lect. Notes Comput. Sci.
0302-9743,
2668
, pp.
755
763
.
68.
Melnik
,
R. V. N.
, 2009, “
Coupling Control and Human Factors in Mathematical Models of Complex Systems
,”
Eng. Applic. Artif. Intell.
0952-1976,
22
(
3
), pp.
351
362
.
69.
Melnik
,
R. V. N.
, and
Zotsenko
,
K. N.
, 2004, “
Mixed Electroelastic Waves and CFL Stability Conditions in Computational Piezoelectricity
,”
Appl. Numer. Math.
0168-9274,
48
(
1
), pp.
41
62
.
70.
Trefethen
,
L. N.
, 2000,
Spectral Method in Matlab
,
SIAM
,
Philadelphia, PA
.
71.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
, 2002, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
0022-460X,
252
(
3
), pp.
527
544
.
72.
Melnik
,
K. N.
, and
Melnik
,
R. V. N.
, 1999, “
Optimal-by-Order Quadrature Formulae for Fast Oscillatory Functions With Inaccurately Given A Priori Information
,”
J. Comput. Appl. Math.
0377-0427,
110
(
1
), pp.
45
72
.
73.
Melnik
,
K. N.
, and
Melnik
,
R. V. N.
, 2001, “
Optimal Cubature Formulae and Recovery of Fast-Oscillating Functions From an Interpolational Class
,”
BIT
0006-3835,
41
(
4
), pp.
748
775
.
74.
Melnik
,
R. V. N.
, 2000, “
Topological Analysis of Eigenvalues in Engineering Computations
,”
Eng. Comput.
0263-4759,
17
(
4
), pp.
386
416
.
75.
Melnik
,
K. N.
, and
Melnik
,
R. V. N.
, 2002, “
Optimal-by-Accuracy and Optimal-by-Order Cubature Formulae in Interpolational Classes
,”
J. Comput. Appl. Math.
0377-0427,
147
(
1
), pp.
233
262
.
76.
Zotsenko
,
K. N.
, and
Melnik
,
R. V. N.
, 2004, “
Optimal Minimax Algorithm for Integrating Fast Oscillatory Functions in Two Dimensions
,”
Eng. Comput.
0263-4759,
21
(
8
), pp.
834
847
.
77.
Kerschen
,
G.
, and
Colinval
,
J. C.
, 2002, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
0022-460X,
249
(
5
), pp.
849
865
.
78.
Machado
,
L. G.
,
Savi
,
M. A.
, and
Pacheco
,
M. C. L.
, 2004, “
Bifurcations and Crises in a Shape Memory Oscillator
,”
Shock Vib.
1070-9622,
11
, pp.
67
80
.
79.
Lacarbonara
,
W.
,
Bernardini
,
D.
, and
Vestroni
,
F.
, 2004, “
Nonlinear Thermomechanical Oscillations of Shape-Memory Devices
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1209
1234
.
80.
Bernardini
,
D.
, and
Rega
,
G.
, 2005, “
Thermomechanical Modelling, Nonlinear Dynamics and Chaos in Shape Memory Oscillators
,”
Math. Comput. Model. Dyn. Syst.
,
11
(
3
), pp.
291
314
.
81.
Elliott
,
R. S.
, 2007, “
Multiscale Bifurcation and Stability of Multilattices
,”
J. Comput.-Aided Mater. Des.
0928-1045,
14
, pp.
143
157
.
82.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
, 2003, “
Proper Orthogonal Decomposition Extensions for Parametric Applications in Transonic Aerodynamics
,” AIAA Paper No. 2003-4213.
83.
Jørgensen
,
B. H.
,
Sørensen
,
J. N.
, and
Brøns
,
M.
, 2003, “
Low-Dimensional Modelling of a Driven Cavity Flow With Two Free Parameters
,”
Theor. Comput. Fluid Dyn.
0935-4964,
16
, pp.
299
317
.
84.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Murray
,
R. M.
, 2004, “
Model Reduction for Compressible Flows Using POD and Galerkin Projection
,”
Physica D
0167-2789,
189
, pp.
115
129
.
You do not currently have access to this content.