This paper presents the classical approximation scheme to investigate the velocity profile associated with the Falkner–Skan boundary-layer problem. Solution of the boundary-layer equation is obtained for a model problem in which the flow field contains a substantial region of strongly reversed flow. The problem investigates the flow of a viscous liquid past a semi-infinite flat plate against an adverse pressure gradient. Optimized results for the dimensionless velocity profiles of reverse wedge flow are presented graphically for different values of wedge angle parameter β taken from 0β2.5. Weighted residual method (WRM) is used for determining the solution of nonlinear boundary-layer problem. Finally, for β=0 the results of WRM are compared with the results of homotopy perturbation method.

1.
Falkner
,
V. M.
, and
Skan
,
S. W.
, 1931, “
Some Approximate Solutions of the Boundary Layer Equations
,”
Philos. Mag.
1478-6435,
12
(
80
), pp.
865
896
.
2.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
, 8th ed.,
Springer
,
New York
, pp.
170
173
.
3.
Na
,
T. Y.
, 1979,
Computational Methods in Engineering Boundary Value Problems
,
Academic
,
New York
.
4.
Rajagopal
,
K. R.
,
Gupta
,
A. S.
, and
Na
,
T. Y.
, 1983, “
A Note on the Falkner–Skan Flows of a Non-Newtonian Fluid
,”
Int. J. Non-Linear Mech.
0020-7462,
18
, pp.
313
320
.
5.
Lin
,
H. T.
, and
Lin
,
L. K.
, 1987, “
Similarity Solutions for Laminar Forced Convection Heat Transfer From Wedges to Fluids of Any Prandtl Number
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1111
1118
.
6.
Hsu
,
C. H.
,
Chen
,
C. S.
, and
Teng
,
J. T.
, 1997, “
Temperature and Flow Fields for the Flow of a Second Grade Fluid Past a Wedge
,”
Int. J. Non-Linear Mech.
0020-7462,
32
(
5
), pp.
933
946
.
7.
Asaithambi
,
A.
, 1998, “
A Finite-Difference Method for the Falkner–Skan Equation
,”
Appl. Math. Comput.
0096-3003,
92
, pp.
135
141
.
8.
Hsu
,
C. H.
, and
Hsiao
,
K. L.
, 1998, “
Conjugate Heat Transfer of a Plate Fin in a Second-Grade Fluid Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1087
1102
.
9.
Mo
L. F.
,
Chen
R. X.
and
Shen
Y. Y.
, 2007, “
Application of the Method of Weighted Residuals to the Glauert-Jet Problem
,”
Phys. Lett. A
0375-9601,
369
(
5–6
), pp.
476
478
.
10.
Kuo
,
B. -L.
, 2005, “
Heat Transfer Analysis for the Falkner–Skan Wedge Flow by the Differential Transformation Method
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5036
5046
.
11.
He
,
J. H.
, 2003, “
Homotopy Perturbation Method—A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
0096-3003,
135
, pp.
73
79
.
You do not currently have access to this content.