The Campbell diagram, a frequency-speed diagram, has been widely used for prediction of possible occurrence of resonances in the phase of design and operation of rotating machinery since its advent in 1920s. In this paper, a set of new frequency-speed diagrams, which is referred to as the Lee diagram, is newly proposed, where the conventional Campbell diagram is incorporated with the concept of the infinity norm of directional frequency response matrix (dFRM) associated with a rotor with rotating and stationary asymmetry in general. The dFRM is constructed based on complete modal analysis of a linear periodically time-varying rotor model formulated in the complex coordinates. It is shown that the Lee diagram is powerful in that it can identify the modes of symmetry, rotating and stationary asymmetry, and extract only a few critical resonances out of the, otherwise, overcrowded ones without a measure of priority as in the Campbell diagram. In order to demonstrate the power of the Lee diagram in design and operation of rotating machines, three examples are treated: a typical anisotropic rigid rotor, a simple general rotor, and a two-pole generator.

1.
Lee
,
C. W.
, and
Joh
,
C. Y.
, 1994, “
Development of the Use of the Directional Frequency Response Functions for the Diagnosis of Anisotropy and Asymmetry in Rotating Machinery: Theory
,”
Mech. Syst. Signal Process.
0888-3270,
8
(
6
), pp.
665
678
.
2.
Lee
,
C. W.
, and
Lee
,
S. K.
, 1997, “
An Efficient Complex Modal Testing Theory for Asymmetric Rotor Systems: Use of Unidirectional Excitation Method
,”
J. Sound Vib.
0022-460X,
206
(
3
), pp.
327
338
.
3.
Lee
,
C. W.
, 1993,
Vibration Analysis of Rotors
,
Kluwer Academic
,
Dordrecht
.
4.
Bucher
,
I.
, and
Ewins
,
D. J.
, 2000, “
Modal Analysis and Testing of Rotating Structures
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
61
96
.
5.
Nordmann
,
R.
, 1984, “
Identification of Modal Parameters of an Elastic Rotor With Oil Film Bearings
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
107
112
.
6.
Lee
,
C. W.
,
Han
,
D. J.
,
Suh
,
J. H.
, and
Hong
,
S. W.
, 2007, “
Modal Analysis of Periodically Time-Varying Linear Rotor Systems
,”
J. Sound Vib.
0022-460X,
303
, pp.
553
574
.
7.
Suh
,
J. H.
,
Hong
,
S. W.
, and
Lee
,
C. W.
, 2005, “
Modal Analysis of Asymmetric Rotor System With Isotropic Stator Using Modulated Coordinates
,”
J. Sound Vib.
0022-460X,
284
, pp.
651
671
.
8.
Campbell
,
W. E.
, 1924, “
The Protection of Steam Turbine Disk Wheels From Axial Vibration
,”
Trans. ASME
0097-6822,
46
, pp.
31
160
.
9.
Crandall
,
S. H.
, 1995, “
Rotordynamics
,”
Nonlinear Dynamics and Stochastic Mechanics
,
W.
Kliemann
and
N. S.
Namachchivaya
, eds.,
CRC
,
Boca Raton, FL
.
10.
Dimentberg
,
F. M.
, 1961,
Flexural Vibrations of Rotating Shafts
,
Butterworths
,
London
.
11.
Rao
,
J. S.
, 1991,
Turbomachine Blade Vibration
,
Wiley Eastern
,
New Delhi
.
12.
Irretier
,
H.
, 1988, “
Free and Force Vibrations of Turbine Blades
,”
Rotordynamics 2: Problems in Turbomachinery
,
N. F.
Rieger
, ed.,
Springer-Verlag
,
Berlin
.
13.
Lalanne
,
M.
, and
Ferraris
,
G.
, 1990,
Rotordynamics Prediction in Engineering
,
Wiley
,
New York
.
14.
Nelson
,
H. D.
, and
Crandall
,
S. H.
, 1992, “
Analytic Prediction of Rotordynamic Response
,”
Handbook of Rotordynamics
,
F. F.
Ehrich
, ed.,
McGraw-Hill
,
New York
.
15.
Singh
,
M. P.
, 1984, “
SAFE
,” Dresser-Rand Company Technology Report No. ST 16.
16.
Lancaster
,
P.
, 1966,
Lambda-Matrices and Vibrating Systems
,
Pergamon
,
New York
.
17.
Lee
,
C. W.
, and
Han
,
D. J.
, 2008, “
Strength of Modes in Rotating Machinery
,”
J. Sound Vib.
0022-460X,
313
, pp.
268
289
.
18.
Lee
,
C. W.
, 2005, “
Evolution of Campbell Diagram With Modal Strength in Rotating Machinery
,”
11th Asia Pacific Vibration Conference
, Malaysia.
19.
Lee
,
C. W.
, 1991, “
A Complex Modal Testing Theory for Rotating Machinery
,”
Mech. Syst. Signal Process.
0888-3270,
5
, pp.
119
137
.
20.
Genta
,
B.
, 1988, “
Whirling of Unsymmetrical Rotors: A Finite Element Approach Based on Complex Coordinates
,”
J. Sound Vib.
0022-460X,
124
, pp.
27
53
.
21.
Ardayfio
,
D.
, and
Frohrib
,
D. A.
, 1976, “
Instability of an Asymmetric Rotor With Asymmetric Shaft Mounted on Symmetric Elastic Supports
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
1161
1165
.
22.
Lancaster
,
P.
, and
Tismenetsky
,
M.
, 1985,
The Theory of Matrices With Application
, 2nd ed.,
Academic
,
New York
.
23.
Calico
,
R. A.
, and
Wiesel
,
W. E.
, 1984, “
Control of Time-Period Systems
,”
J. Guid. Control Dyn.
0731-5090,
7
, pp.
671
676
.
24.
Gourlay
,
A. R.
, and
Watson
,
G. A.
, 1973,
Computational Methods for Matrix Eigenproblems
,
Wiley
,
New York
.
25.
Bently
,
D. E.
, 2002,
Fundamentals of Rotating Machinery Diagnostics
,
Bently Pressurized Bearing Press
,
Minden
.
You do not currently have access to this content.