We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are used to obtain an exact solution valid everywhere in the domain of interest (including at the crack tip) by reducing the problem to a Cauchy singular integro-differential equation of the first order. Finally, we adapt classical collocation methods to obtain numerical solutions, which demonstrate several interesting phenomena in the case when the solid incorporates a traction-free crack face and is subjected to uniform remote loading. In particular, we note that, in contrast to the classical result from linear elastic fracture mechanics, the stresses at the (sharp) crack tip remain finite.

1.
Buehler
,
M. J.
, and
Gao
,
H. J.
, 2006, “
Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips
,”
Nature (London)
0028-0836,
439
, pp.
307
310
.
2.
Buehler
,
M. J.
,
Abraham
,
F. F.
, and
Gao
,
H. J.
, 2003, “
Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale
,”
Nature (London)
0028-0836,
426
, pp.
141
146
.
3.
Buehler
,
M. J.
,
Gao
,
H. J.
, and
Huang
,
Y. G.
, 2004, “
Continuum and Atomistic Studies of the Near-Crack Field of a Rapidly Propagating Crack in a Harmonic Lattice
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
21
42
.
4.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1998, “
Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture
,”
Europhys. Lett.
0295-5075,
44
, pp.
783
787
.
5.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
6.
Shenoy
,
V. B.
, 2002, “
Size-Dependent Rigidities of Nanosized Torsional Elements
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4039
4052
.
7.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
(
4
), pp.
291
323
.
8.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
, 1998, “
A General Theory of Curved Deformable Interface in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
(
5
), pp.
1093
1109
.
9.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
, 2007, “
Analytical Solution of Size-Dependent Elastic Field of a Nano-Scale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
0021-8936,
74
(
3
), pp.
568
574
.
10.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
0021-8936,
71
(
5
), pp.
663
671
.
11.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karhaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
(
7
), pp.
1574
1596
.
12.
Cammarata
,
R. C.
, 1997, “
Surface and Interface Stress Effects on Interfacial and Nanostructured Materials
,”
Mater. Sci. Eng., A
0921-5093,
237
(
2
), pp.
180
184
.
13.
Hoagland
,
R. G.
,
Daw
,
M. S.
, and
Hirth
,
J. P.
, 1991, “
Some Aspects of Forces and Fields in Atomic Models of Crack Tips
,”
J. Mater. Res.
0884-2914,
6
, pp.
2565
2571
.
14.
Wang
,
G. -F.
,
Feng
,
X. -Q.
,
Wang
,
T. -J.
, and
Gao
,
W.
, 2008, “
Surface Effects on the Near-Tip Stresses for Mode-I and Mode-III Cracks
,”
ASME J. Appl. Mech.
0021-8936,
75
, pp.
1
5
.
15.
Gill
,
S. P. A.
, 2007, “
The Effect of Surface-Stress on the Concentration of Stress at Nanoscale Surface Flaws
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
7500
7509
.
16.
Wu
,
C. H.
, 1999, “
The Effect of Surface Stress on the Configurational Equilibrium of Voids and Cracks
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
2469
2492
.
17.
Wu
,
C. H.
, and
Wang
,
M. L.
, 2000, “
The Effect of Crack-Tip Point Loads on Fracture
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
2283
2296
.
18.
Wu
,
C. H.
, and
Wang
,
M. L.
, 2001, “
Configurational Equilibrium of Circular-Arc Cracks With Surface Stress
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4279
4292
.
19.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, The Netherlands
.
20.
Chakrabarti
,
A.
, and
Hamsapriye
, 1999, “
Numerical Solution of a Singular Integro-Differential Equation
,”
ZAMM
0044-2267,
79
(
4
),
233
241
.
21.
England
,
A. H.
, 1971,
Complex Variable Methods in Elasticity
,
Wiley
,
London
.
22.
Sih
,
G. C.
, 1965, “
Boundary Problems for Longitudinal Shear Cracks
,”
Dev. Theor. Appl. Mech.
0070-4598,
2
, pp.
117
130
.
23.
Ioakimidis
,
N. I.
, 1984, “
A Natural Interpolation Formula for Prandtl’s Singular Integrodifferential Equation
,”
Int. J. Numer. Methods Fluids
0271-2091,
4
, pp.
283
290
.
24.
Frankel
,
J. I.
, 1995, “
A Galerkin Solution to a Regularized Cauchy Singular Integro-Differential Equation
,”
Q. Appl. Math.
0033-569X,
LIII
(
2
), pp.
245
258
.
You do not currently have access to this content.