The problem in the creation of traveling waves is approached here from an unconventional angle. The formulation makes use of normal vibration modes, which are standing waves, to express both traveling waves and the required force distribution. It is shown that a localized force is required at any discontinuity along the structure to absorb reflected waves. This convention is demonstrated for one- and two-dimensional structures modeled as continua, and as discretized numerical approximation of the mass and stiffness matrices. Harmonic vibrations can be characterized as standing or traveling waves or as a combination of both. By applying forces that have been specially designed for the purpose, the vibratory response can become a pure traveling wave. The force distribution is important for the design of ultrasonic motors and in control applications, attempting to absorb and create outgoing and incoming waves.

1.
Mead
,
D. J.
, 1996, “
Wave Propagation in Continuous Periodic Structures: Research Contribution From Southampton, 1964–1995
,”
J. Sound Vib.
0022-460X,
190
, pp.
495
524
.
2.
Kuribayashi
,
M.
,
Ueha
,
S.
, and
Mori
,
E.
, 1985, “
Excitation Conditions of Flexural Traveling Waves for a Reversible Ultrasonic Linear Motor
,”
J. Acoust. Soc. Am.
0001-4966,
77
, pp.
1431
1435
.
3.
Minikes
,
A.
, and
Bucher
,
I.
, 2003, “
Non-Contacting Lateral Transportation Using Gas Squeeze Film Generated by Flexural Traveling Waves—Numerical Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
113
, pp.
2464
2473
.
4.
Chen
,
L.
,
Wang
,
Y.
,
Ma
,
S.
, and
Li
,
B.
, 2003, “
Analysis of Traveling Wave Locomotion of Snake Robot
,”
Proceedings of the 2003 IEEE, International Conference on Robotics, Intelligent Systems, and Signal Processing
, Changsha, China.
5.
O’Connor
,
W. J.
, and
Lang
,
D.
, 1998, “
Position Control of Flexible Robot Arms Using Mechanical Waves
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
334
339
.
6.
Tanaka
,
N.
, and
Kikushima
,
Y.
, 1991, “
Active Wave Control of a Flexible Beam (Proposition of the Active Sink Method)
,”
JSME Int. J., Ser. III
0914-8825,
34
, pp.
159
167
.
7.
Mace
,
B. R.
, 1984, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
0022-460X,
97
(
2
), pp.
237
246
.
8.
O’Connor
,
W. J.
, 2008, “
Wave-Based Control of Flexible Mechanical Systems
,”
International Conference on Noise and Vibration Engineering (ISMA2008)
, Leuven, Belgium.
9.
Gabai
,
R.
, and
Bucher
,
I.
, 2009, “
Excitation and Sensing of Multiple Vibrating Traveling Waves in One-Dimensional Structures
,”
J. Sound Vib.
0022-460X,
319
, pp.
406
425
.
10.
Minikes
,
A.
,
Gabay
,
R.
,
Bucher
,
I.
, and
Feldman
,
M.
, 2005, “
On the Sensing and Tuning of Progressive Structural Vibration Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
52
, pp.
1565
1576
.
11.
Manceau
,
J. F.
, and
Bastien
,
F.
, 1995, “
Production of a Quasi-Traveling Wave in a Silicon Rectangular Plate Using Single Phase Driver
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
42
, pp.
59
65
.
12.
Bucher
,
I.
, 2004, “
Estimating the Ratio Between Traveling and Standing Vibration Waves Under Non-Stationary Conditions
,”
J. Sound Vib.
0022-460X,
270
, pp.
341
359
.
13.
Feeny
,
B. F.
, 2006, “
A Method of Decomposing Wave Motions
,”
Proceedings of the ASME IMECE’06
, Chicago, Nov. 5–10.
14.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland
,
Amsterdam
.
15.
Norton
,
M. P.
, 1989,
Fundamentals of Noise and Vibration Analysis for Engineers
,
Cambridge University Press
,
Cambridge, UK
.
16.
Levitan
,
B. M.
, 1987,
Inverse Sturml-Liouville Problems
,
VNU Science
,
Utrecht, The Netherlands
.
17.
Bishop
,
R. E. D.
,
Gladwell
,
G. M. L.
, and
Michaelson
,
S.
, 1965,
The Matrix Analysis of Vibration
,
Cambridge University Press
,
Cambridge, UK
.
18.
Spiegel
,
M. R.
, 1952, “
The Dirac Delta-Function and the Summation of Fourier Series
,”
J. Appl. Phys.
0021-8979,
23
, pp.
906
909
.
19.
Noble
,
B.
, and
Daniel
,
J. W.
, 1988,
Applied Linear Algebra
, 3rd ed.,
Prentice-Hall International
,
Englewood Cliffs, NJ
.
20.
Bucher
,
I.
, and
Braun
,
S. G.
, 1997, “
Left-Eigenvectors: Extraction From Measurements and Physical Interpretation
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
64
(
1
), pp.
97
105
.
21.
Geradin
,
M.
, and
Rixen
,
D.
, 1997,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
,
Chichester
.
22.
Cook
,
R.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2002,
Concepts and Applications of Finite Elements Analysis
,
Wiley
,
New York
.
23.
Morse
,
P. M.
, 1986,
Vibration and Sound
,
McGraw-Hill
,
New York
.
24.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1973,
Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.