We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.

1.
Pindera
,
M.-J.
,
Aboudi
,
J.
, and
Arnold
,
S.
, 1998, “
Thermomechanical Analysis of Functionally Graded Thermal Barrier Coatings With Different Microstructural Scales
,”
J. Am. Ceram. Soc.
0002-7820,
81
(
6
), pp.
1525
1536
.
2.
Horgan
,
C.
, and
Chan
,
A.
, 1999, “
Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials
,”
J. Elast.
0374-3535,
55
(
1
), pp.
43
59
.
3.
Yildirim
,
B.
, and
Erdogan
,
F.
, 2004, “
Edge Crack Problems in Homogenous and Functionally Graded Material Thermal Barrier Coatings Under Uniform Thermal Loading
,”
J. Therm. Stresses
0149-5739,
27
(
4
), pp.
311
329
.
4.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
, 1999, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stresses
0149-5739,
22
(
2
), pp.
177
188
.
5.
Nadeau
,
J.
, and
Meng
,
X.
, 2000, “
On the Response Sensitivity of an Optimally Designed Functionally Graded Layer
,”
Composites, Part B
1359-8368,
31
(
4
), pp.
285
297
.
6.
Kawamura
,
R.
, and
Tanigawa
,
Y.
, 1998, “
Multipurpose Optimization Problem of Material Composition for Thermal Stress Relaxation Type of a Functionally Graded Plate
,”
JSME Int. J., Ser. A
1340-8046,
41
(
3
), pp.
318
325
.
7.
Ootao
,
Y.
,
Kawamura
,
R.
,
Tanigawa
,
Y.
, and
Nakamura
,
T.
, 1998, “
Neural Network Optimization of Material Composition of a Functionally Graded Material Plate at Arbitrary Temperature Range and Temperature Rise
,”
Arch. Appl. Mech.
0939-1533,
68
, pp.
662
676
.
8.
Tanaka
,
K.
,
Tanaka
,
Y.
,
Enomoto
,
K.
,
Poterasu
,
V.
, and
Sagano
,
Y.
, 1993, “
Design of Thermoelastic Materials Using Direct Sensitivity and Optimization Methods. Reduction of Thermal Stresses in Functionally Gradient Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
106
(
1–2
), pp.
271
284
.
9.
Tanaka
,
K.
,
Tanaka
,
Y.
,
Watanable
,
H.
,
Poterasu
,
V. F.
, and
Sugano
,
Y.
, 1993, “
Improved Solution to Thermoelastic Material Design in Functionally Gradient Materials; Scheme to Reduce Thermal Stresses
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
109
(
3-4
), pp.
377
389
.
10.
Tanaka
,
K.
,
Watanabe
,
H.
,
Sugano
,
Y.
, and
Poterasu
,
V.
, 1996, “
Multicriterial Material Tailoring of a Hollow Cylinder in Functionally Gradient Materials: Scheme to Global Reduction of Thermoelastic Stresses
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
(
3-4
), pp.
369
380
.
11.
Tanigawa
,
Y.
,
Oka
,
N.
,
Akai
,
T.
, and
Kawamura
,
R.
, 1997, “
One-Dimensional Transient Thermal Stress Problem for Nonhomogeneous Hollow Circular Cylinder and its Optimization of Material Composition for Thermal Stress Relaxation
,”
JSME Int. J., Ser. A
1340-8046,
40
(
2
), pp.
117
127
.
12.
Cho
,
J.
, and
Choi
,
J.
, 2004, “
A Yield-Criteria Tailoring of the Volume Fraction in Metal-Ceramic Functionally Graded Material
,”
Eur. Phys. J. A
1434-6001,
23
(
2
), pp.
271
281
.
13.
Goupee
,
A.
, and
Vel
,
S.
, 2006, “
Two-Dimensional Optimization of Material Composition of Functionally Graded Materials Using Meshless Analyses and a Genetic Algorithm
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5926
5948
.
14.
Lipton
,
R.
, 2002, “
Design of Functionally Graded Composite Structures in the Presence of Stress Constraints
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2575
2586
.
15.
Boussaa
,
D.
, 2000, “
Optimizing a Compositionally Graded Interlayer to Reduce Thermal Stresses in a Coated Tube
,”
C. R. Acad. Sci., Ser. IIb Mec.
1620-7742,
328
(
3
), pp.
209
215
.
16.
Turteltaub
,
S.
, 2002, “
Optimal Control and Optimization of Functionally Graded Materials for Thermomechanical Processes
,”
Int. J. Solids Struct.
0020-7683,
39
(
12
), pp.
3175
3197
.
17.
Li
,
Y.
,
Ramesh
,
K.
, and
Chin
,
E.
, 2001, “
Dynamic Characterization of Layered and Graded Structures Under Impulsive Loading
,”
Int. J. Solids Struct.
0020-7683,
38
(
34-35
), pp.
6045
6061
.
18.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
(
3
), pp.
351
364
.
19.
Cho
,
J.
, and
Oden
,
J. T.
, 2000, “
Functionally Graded Material: A Parametric Study on Thermal-Stress Characteristics Using the Crank-Nicolson-Galerkin Scheme
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
(
1
), pp.
17
38
.
20.
Reddy
,
J.
, 2000, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
1
), pp.
663
684
.
21.
Shabana
,
Y. M.
, and
Noda
,
N.
, 2002, “
Thermo-Elasto-Plastic Stresses of Functionally Graded Material Plate With a Substrate and a Coating
,”
J. Therm. Stresses
0149-5739,
25
(
12
), pp.
1133
1146
.
22.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
C.
, 2004, “
A Local Biem for Analysis of Transient Heat Conduction With Nonlinear Source Terms in FGMS
,”
Eng. Anal. Boundary Elem.
0955-7997,
28
(
1
), pp.
1
11
.
23.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
42–44
), pp.
4511
4539
.
24.
Bobaru
,
F.
, and
Jiang
,
H.
, 2004, “
Optimization of Functionally Graded Materials With Temperature Dependent Properties: A Meshfree Solution
,” in:
The XXI International Congress of Theoretical and Applied Mechanics
,
Warsaw, Poland
, ISBN 83-89687-01-1.
25.
Qian
,
L.
,
Batra
,
R.
, and
Chen
,
L.
, 2004, “
Analysis of Cylindrical Bending Thermoelastic Deformations of Functionally Graded Plates by a Meshless Local Petrov-Galerkin Method
,”
Comput. Mech.
0178-7675,
33
(
4
), pp.
263
273
.
26.
Sladek
,
J.
,
Sladek
,
V.
, and
Zhang
,
C.
, 2003, “
Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method
,”
Comput. Mater. Sci.
0927-0256,
28
(
3-4
), pp.
494
504
.
27.
Noda
,
N.
, 1999, “
Thermal Stresses in Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
22
(
4-5
), pp.
477
512
.
28.
Jin
,
Z.-H.
, and
Batra
,
R.
, 1998, “
Thermal Fracture of Ceramics With Temperature-Dependent Properties
,”
J. Therm. Stresses
0149-5739,
21
, pp.
157
176
.
29.
Liew
,
K.
,
Yang
,
J.
, and
Kitipornchai
,
S.
, 2004, “
Thermal Post-Buckling of Laminated Plates Comprising Functionally Graded Materials With Temperature-Dependent Properties
,”
ASME J. Appl. Mech.
0021-8936,
71
(
6
), pp.
839
850
.
30.
Belytschko
,
T.
,
Lu
,
Y.
, and
Gu
,
L.
, 1994, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
(
2
), pp.
229
256
.
31.
Chen
,
J.-S.
, and
Wang
,
H.-P.
, 2000, “
New Boundary Condition Treatments in Meshfree Computation of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
187
(
3
), pp.
441
468
.
32.
Rabczuk
,
T.
, and
Belytschko
,
T.
, 2005, “
Adaptivity for Structured Meshfree Particle Methods in 2D and 3D
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
1559
1582
.
33.
Bobaru
,
F.
, and
Rachakonda
,
S.
, 2006, “
E(FG)2: A New Fixed-Grid Shape Optimization Method Based on the Element-Free Galerkin Meshfree Analysis
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
3
), pp.
215
228
.
34.
Bobaru
,
F.
, and
Mukherjee
,
S.
, 2002, “
Meshless Approach to Shape Optimization of Linear Thermoelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
4
), pp.
765
796
.
35.
Reiter
,
T.
, and
Dvorak
,
G.
, 1998, “
Micromechanical Models for Graded Composite Materials: II. Thermomechanical Loading
,”
J. Am. Soc. Mass Spectrom.
1044-0305,
46
, pp.
1655
1673
.
36.
Nocedal
,
J.
, and
Wright
,
S.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York
.
37.
Chen
,
J.-S.
,
Pan
,
C.
,
Wu
,
C.-T.
, and
Liu
,
W. K.
, 1996, “
Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-Linear Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
(
1-4
), pp.
195
227
.
38.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
0003-6900,
55
(
1
), pp.
1
34
.
39.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
Institute of Materials
,
London
.
40.
Akima
,
H.
, 1970, “
New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures
,”
J. Assoc. Comput. Mach.
0004-5411,
17
(
4
), pp.
589
602
.
41.
Bobaru
,
F.
, and
Mukherjee
,
S.
, 2001, “
Shape Sensitivity Analysis and Shape Optimization in Planar Elasticity Using the Element-Free Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
32-33
), pp.
4319
4337
.
42.
Shackelford
,
J.
, and
Alexander
,
W.
, 2001,
CRC Materials Science and Engineering Handbook
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.