Some stability results are established for localized buckling solutions of a strut-on-foundation model which has an initially unstable post-buckling path followed by a restabilizing property. These results are in stark contrast with those for models with non-restabilizing behavior for which all solutions are unstable under dead-loading conditions. By approximating solutions with a nonperiodic set of functions, the stability of these static solutions can be assessed by examining the nature of the equilibrium using total potential energy considerations.

1.
Hunt
,
G. W.
,
Bolt
,
H. M.
, and
Thompson
,
J. M. T.
,
1989
, “
Structural Localization Phenomena and the Dynamical Phase-Space Analogy
,”
Proc. R. Soc. London, Ser. A
,
425
, pp.
245
267
.
2.
Champneys
,
A. R.
,
Hunt
,
G. W.
, and
Thompson
,
J. M. T.
, eds.,
1997
, “
Localization and Solitary Waves in Solid Mechanics
,”
Philos. Trans. R. Soc. London, Ser. A
,
355
, pp.
2073
2213
.
3.
Coman
,
C. D.
,
Bassom
,
A. P.
, and
Wadee
,
M. K.
,
2003
, “
Elasto-Plastic Localized Responses in One-Dimensional Structural Models
,” J. Eng. Math., to appear.
4.
Koiter
,
W. T.
,
1967
, “
On the Stability of Elastic Equilibrium,” Ph.D. thesis, Technological University of Delft, Holland, 1945; English translation issued by NASA
,
Tech. Trans.
,
F10
, p.
833
833
.
5.
Thompson, J. M. T., and Hunt, G. W., 1973, A General Theory of Elastic Stability, John Wiley and Sons, London.
6.
Hunt
,
G. W.
, and
Wadee
,
M. K.
,
1991
, “
Comparative Lagrangian Formulations for Localized Buckling
,”
Proc. R. Soc. London, Ser. A
,
434
, pp.
485
502
.
7.
Lange
,
C. G.
, and
Newell
,
A. C.
,
1971
, “
The Post-Buckling Problem for Thin Elastic Shells
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
21
(
4
), pp.
605
629
.
8.
Fu, Y. B., 2001, “Perturbation Methods and Nonlinear Stability Analysis,” Nonlinear Elasticity, Y. B. Fu and R. W. Ogden, eds., Cambridge University Press, Cambridge, UK, pp. 345–391.
9.
Calvo
,
D. C.
,
Yang
,
T.-S.
, and
Akylas
,
T. R.
,
2000
, “
On the Stability of Solitary Waves With Decaying Oscillatory Tails
,”
Proc. R. Soc. London, Ser. A
,
456
, pp.
469
487
.
10.
Sandstede
,
B.
,
1997
, “
Instability of Localized Buckling Modes in a One-Dimensional Strut Model
,”
Philos. Trans. R. Soc. London, Ser. A
,
355
, pp.
2083
2097
.
11.
Wadee
,
M. K.
, and
Bassom
,
A. P.
,
1999
, “
Effects of Exponentially Small Terms in the Perturbation Approach to Localized Buckling
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
2351
2370
.
12.
Hunt
,
G. W.
,
Wadee
,
M. K.
, and
Shiacolas
,
N.
,
1993
, “
Localized Elasticæ for the Strut on the Linear Foundation
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
1033
1038
.
13.
Wadee
,
M. K.
,
Hunt
,
G. W.
, and
Whiting
,
A. I. M.
,
1997
, “
Asymptotic and Rayleigh-Ritz Routes to Localized Buckling Solutions in an Elastic Instability Problem
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
2085
2107
.
14.
Wadee
,
M. K.
, and
Bassom
,
A. P.
,
2000
, “
Restabilization in Structures Susceptible to Localized Buckling: An Approximate Method for the Extended Post-Buckling Regime
,”
J. Eng. Math.
,
38
(
1
), pp.
77
90
.
15.
Woods
,
P. D.
, and
Champneys
,
A. R.
,
1999
, “
Heteroclinic Tangles and Homoclinic Snaking in the Unfolding of a Degenerate Reversible Hamiltonian Hopf Bifurcation
,”
Physica D
,
129
, pp.
147
170
.
16.
Yang
,
T.-S.
, and
Akylas
,
T. R.
,
1997
, “
On Asymmetric Gravity-Capillary Solitary Waves
,”
J. Fluid Mech.
,
330
, pp.
215
232
.
17.
Wadee
,
M. K.
,
Coman
,
C. D.
, and
Bassom
,
A. P.
,
2002
, “
Solitary Wave Interaction Phenomena in a Strut Buckling Model Incorporating Restabilization
,”
Physica D
,
163
, pp.
26
48
.
18.
Geer
,
J. F.
, and
Andersen
,
C. M.
,
1989
, “
A Hybrid Perturbation Galerkin Technique With Applications to Slender Body Theory
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
49
(
2
), pp.
344
361
.
19.
Wadee
,
M. K.
,
Higuchi
,
Y.
, and
Hunt
,
G. W.
,
2000
, “
Galerkin Approximations to Static and Dynamic Localization Problems
,”
Int. J. Solids Struct.
,
37
(
22
), pp.
3015
3029
.
20.
Wolfram Research Inc., 1999, MATHEMATICA: A System for Doing Mathematics by Computer, Version 4, Wolfram Research, Champaign, IL.
21.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992, Numerical Recipes in C. The Art of Scientific Programming, 2nd Ed., Cambridge University Press, New York.
22.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1997, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations; available via anonymous ftp from ftp://ftp.cs.concordia.ca/pub/doede1/auto.
23.
Maddocks
,
J. H.
,
1987
, “
Stability and Folds
,”
Arch. Ration. Mech. Anal.
,
99
(
4
), pp.
301
328
.
24.
Hunt
,
G. W.
,
Peletier
,
M. A.
,
Champneys
,
A. R.
,
Woods
,
P. D.
,
Wadee
,
M. A.
,
Budd
,
C. J.
, and
Lord
,
G. J.
,
2000
, “
Cellular Buckling in Long Structures
,”
Nonlinear Dyn.
,
21
(
1
), pp.
3
29
.
25.
Peletier
,
M. A.
,
2001
, “
Sequential Buckling: A Variational Analysis
,”
SIAM J. Math. Anal.
,
32
, pp.
1142
1168
.
You do not currently have access to this content.