Some stability results are established for localized buckling solutions of a strut-on-foundation model which has an initially unstable post-buckling path followed by a restabilizing property. These results are in stark contrast with those for models with non-restabilizing behavior for which all solutions are unstable under dead-loading conditions. By approximating solutions with a nonperiodic set of functions, the stability of these static solutions can be assessed by examining the nature of the equilibrium using total potential energy considerations.
Issue Section:
Technical Papers
1.
Hunt
, G. W.
, Bolt
, H. M.
, and Thompson
, J. M. T.
, 1989
, “Structural Localization Phenomena and the Dynamical Phase-Space Analogy
,” Proc. R. Soc. London, Ser. A
, 425
, pp. 245
–267
.2.
Champneys
, A. R.
, Hunt
, G. W.
, and Thompson
, J. M. T.
, eds., 1997
, “Localization and Solitary Waves in Solid Mechanics
,” Philos. Trans. R. Soc. London, Ser. A
, 355
, pp. 2073
–2213
.3.
Coman
, C. D.
, Bassom
, A. P.
, and Wadee
, M. K.
, 2003
, “Elasto-Plastic Localized Responses in One-Dimensional Structural Models
,” J. Eng. Math., to appear.4.
Koiter
, W. T.
, 1967
, “On the Stability of Elastic Equilibrium,” Ph.D. thesis, Technological University of Delft, Holland, 1945; English translation issued by NASA
, Tech. Trans.
, F10
, p. 833
833
.5.
Thompson, J. M. T., and Hunt, G. W., 1973, A General Theory of Elastic Stability, John Wiley and Sons, London.
6.
Hunt
, G. W.
, and Wadee
, M. K.
, 1991
, “Comparative Lagrangian Formulations for Localized Buckling
,” Proc. R. Soc. London, Ser. A
, 434
, pp. 485
–502
.7.
Lange
, C. G.
, and Newell
, A. C.
, 1971
, “The Post-Buckling Problem for Thin Elastic Shells
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 21
(4
), pp. 605
–629
.8.
Fu, Y. B., 2001, “Perturbation Methods and Nonlinear Stability Analysis,” Nonlinear Elasticity, Y. B. Fu and R. W. Ogden, eds., Cambridge University Press, Cambridge, UK, pp. 345–391.
9.
Calvo
, D. C.
, Yang
, T.-S.
, and Akylas
, T. R.
, 2000
, “On the Stability of Solitary Waves With Decaying Oscillatory Tails
,” Proc. R. Soc. London, Ser. A
, 456
, pp. 469
–487
.10.
Sandstede
, B.
, 1997
, “Instability of Localized Buckling Modes in a One-Dimensional Strut Model
,” Philos. Trans. R. Soc. London, Ser. A
, 355
, pp. 2083
–2097
.11.
Wadee
, M. K.
, and Bassom
, A. P.
, 1999
, “Effects of Exponentially Small Terms in the Perturbation Approach to Localized Buckling
,” Proc. R. Soc. London, Ser. A
, 455
, pp. 2351
–2370
.12.
Hunt
, G. W.
, Wadee
, M. K.
, and Shiacolas
, N.
, 1993
, “Localized Elasticæ for the Strut on the Linear Foundation
,” ASME J. Appl. Mech.
, 60
(4
), pp. 1033
–1038
.13.
Wadee
, M. K.
, Hunt
, G. W.
, and Whiting
, A. I. M.
, 1997
, “Asymptotic and Rayleigh-Ritz Routes to Localized Buckling Solutions in an Elastic Instability Problem
,” Proc. R. Soc. London, Ser. A
, 453
, pp. 2085
–2107
.14.
Wadee
, M. K.
, and Bassom
, A. P.
, 2000
, “Restabilization in Structures Susceptible to Localized Buckling: An Approximate Method for the Extended Post-Buckling Regime
,” J. Eng. Math.
, 38
(1
), pp. 77
–90
.15.
Woods
, P. D.
, and Champneys
, A. R.
, 1999
, “Heteroclinic Tangles and Homoclinic Snaking in the Unfolding of a Degenerate Reversible Hamiltonian Hopf Bifurcation
,” Physica D
, 129
, pp. 147
–170
.16.
Yang
, T.-S.
, and Akylas
, T. R.
, 1997
, “On Asymmetric Gravity-Capillary Solitary Waves
,” J. Fluid Mech.
, 330
, pp. 215
–232
.17.
Wadee
, M. K.
, Coman
, C. D.
, and Bassom
, A. P.
, 2002
, “Solitary Wave Interaction Phenomena in a Strut Buckling Model Incorporating Restabilization
,” Physica D
, 163
, pp. 26
–48
.18.
Geer
, J. F.
, and Andersen
, C. M.
, 1989
, “A Hybrid Perturbation Galerkin Technique With Applications to Slender Body Theory
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 49
(2
), pp. 344
–361
.19.
Wadee
, M. K.
, Higuchi
, Y.
, and Hunt
, G. W.
, 2000
, “Galerkin Approximations to Static and Dynamic Localization Problems
,” Int. J. Solids Struct.
, 37
(22
), pp. 3015
–3029
.20.
Wolfram Research Inc., 1999, MATHEMATICA: A System for Doing Mathematics by Computer, Version 4, Wolfram Research, Champaign, IL.
21.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992, Numerical Recipes in C. The Art of Scientific Programming, 2nd Ed., Cambridge University Press, New York.
22.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1997, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations; available via anonymous ftp from ftp://ftp.cs.concordia.ca/pub/doede1/auto.
23.
Maddocks
, J. H.
, 1987
, “Stability and Folds
,” Arch. Ration. Mech. Anal.
, 99
(4
), pp. 301
–328
.24.
Hunt
, G. W.
, Peletier
, M. A.
, Champneys
, A. R.
, Woods
, P. D.
, Wadee
, M. A.
, Budd
, C. J.
, and Lord
, G. J.
, 2000
, “Cellular Buckling in Long Structures
,” Nonlinear Dyn.
, 21
(1
), pp. 3
–29
.25.
Peletier
, M. A.
, 2001
, “Sequential Buckling: A Variational Analysis
,” SIAM J. Math. Anal.
, 32
, pp. 1142
–1168
.Copyright © 2004
by ASME
You do not currently have access to this content.