Free space Green’s functions are derived for graded materials in which the thermal conductivity varies exponentially in one coordinate. Closed-form expressions are obtained for the steady-state diffusion equation, in two and three dimensions. The corresponding boundary integral equation formulations for these problems are derived, and the three-dimensional case is solved numerically using a Galerkin approximation. The results of test calculations are in excellent agreement with exact solutions and finite element simulations.

1.
Hirai, T., 1996, “Functionally Graded Materials,” Materials Science and Technology, R. J. Brook, ed., Vol. 17B of Processing of Ceramics, Part 2, VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp. 292–341.
2.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
,
W. P.
Jr.
,
1995
, “
Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
,
30
, pp.
2183
2193
.
3.
Paulino, G. H., Jin, Z.-H., and Dodds, R. H., 2003, “Failure of Functionally Graded Materials,” Comprehensive Structural Integrity, B. Karihaloo, R. Ritchie and I. Milne, eds., 2, Elsevier, New York, Chap. 13.
4.
Suresh, S., and Mortensen, A., 1998, Fundamentals of Functionally Graded Materials, The Institute of Materials, IOM Communications Ltd., London.
5.
Bonnet, M., 1995, Boundary Integral Equation Methods for Solids and Fluids, John Wiley and Sons, New York.
6.
Barton, G., 1999, Elements of Green’s Functions and Propagation, Oxford University Press, Oxford, UK.
7.
Ang
,
W. T.
,
Kusuma
,
J.
, and
Clements
,
D. L.
,
1996
, “
A Boundary Element Method for a Second Order Elliptic Partial Differential Equation With Variable Coefficients
,”
Eng. Anal. Boundary Elem.
,
18
, pp.
311
316
.
8.
Clements
,
D. L.
,
1980
, “
A Boundary Integral Equation Method for the Numerical Solution of a Second Order Elliptic Equation With Variable Coefficients
,”
J. Aust. Math. Soc. B, Appl. Math.
,
22
, pp.
218
228
.
9.
Shaw
,
R. P.
,
1994
, “
Green’s Functions for Heterogeneous Media Potential Problems
,”
Eng. Anal. Boundary Elem.
,
13
, pp.
219
221
.
10.
Shaw
,
R. P.
, and
Makris
,
N.
,
1992
, “
Green’s Functions for Helmholtz and Laplace Equations in Heterogeneous Media
,”
Eng. Anal. Boundary Elem.
,
10
, pp.
179
183
.
11.
Shaw
,
R. P.
, and
Manolis
,
G. D.
,
2000
, “
A Generalized Helmholtz Equation Fundamental Solution Using a Conformal Mapping and Dependent Variable Transformation
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
177
188
.
12.
Divo
,
E.
, and
Kassab
,
A. J.
,
1998
, “
Generalized Boundary Integral Equation for Heat Conduction in Non-homogeneous Media: Recent Developments on the Sifting Property
,”
Eng. Anal. Boundary Elem.
,
22
, pp.
221
234
.
13.
Kassab
,
A. J.
, and
Divo
,
E.
,
1996
, “
A Generalized Boundary Integral Equation for Isotropic Heat Conduction With Spatially Varying Thermal Conductivity
,”
Eng. Anal. Boundary Elem.
,
18
, pp.
273
286
.
14.
Bonnet
,
M.
, and
Guiggiani
,
M.
,
1998
, Comments about the paper entitled “
A Generalized Boundary Integral Equation for Isotropic Heat Conduction With Spatially Varying Thermal Conductivity,” by A. J. Kassab and E. Divo
,
Eng. Anal. Boundary Elem.
,
22
, pp.
235
240
.
15.
Power
,
H.
,
1997
, “
On the Existence of Kassab and Divo’s Generalized Boundary Integral Equation Formulation for Isotropic Heterogeneous Steady State Heat Conduction Problems
,”
Eng. Anal. Boundary Elem.
,
20
, pp.
341
345
.
16.
Vrettos, C., 1991, “Surface Green’s Functions for Continuously Nonhomogeneous Soil,” Computer Methods and Advances in Geomechanics, Beer, Booker, and Carter, eds., Rotterdam, Balkema, pp. 801–804.
17.
Li
,
B. Q.
, and
Evans
,
J. W.
,
1991
, “
Boundary Element Solution of Heat Convection-Diffusion Problems
,”
J. Comput. Phys.
,
93
, pp.
255
272
.
18.
Wrobel, L. C., personal communication.
19.
Shaw
,
R. P.
, and
Gipson
,
G. S.
,
1995
, “
Interrelated Fundamental Solutions for Various Heterogeneous Potential, Wave and Advective-Diffusive Problems
,”
Eng. Anal. Boundary Elem.
,
16
, pp.
29
34
.
20.
Martin, P. A., Richardson, J. D., Gray, L. J., and Berger, J., 2002, “On Green’s Function for a Three-Dimensional Exponentially-Graded Elastic Solid,” Proc. Royal Soc. London A, in press.
21.
Kellogg, O. D., 1953, Foundations of Potential Theory, Dover, New York.
22.
Olver, F. W. J., 1972, “Bessel Functions of Integer Order,” Handbook of Mathematical Functions, M. Abromowitz and I. A. Stegun, eds., National Bureau of Standards, Washington, D.C., Chap. 9, pp. 355–434.
23.
Konda
,
N.
, and
Erdogan
,
F.
,
1994
, “
The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
,
47
, pp.
533
545
.
24.
Bonnet
,
M.
,
Maier
,
G.
, and
Polizzotto
,
C.
,
1998
, “
Symmetric Galerkin Boundary Element Method
,”
ASME Appl. Mech. Rev.
,
51
, pp.
669
704
.
25.
Hartmann
,
F.
,
Katz
,
C.
, and
Protopsaltis
,
B.
, 1985, “Boundary Elements and Symmetry,” Ing.-Arch., 55, pp. 440–449.
26.
Maier
,
G.
,
Diligenti
,
M.
, and
Carini
,
A.
,
1991
, “
A Variational Approach to Boundary Element Elastodynamic Analysis and Extension to Multidomain Problems
,”
Comp. Meth. Appl. Eng.
,
92
, pp.
193
213
.
27.
Sirtori
,
S.
,
1979
, “
General Stress Analysis Method by Means of Integral Equations and Boundary Elements
,”
Meccanica
,
14
, pp.
210
218
.
28.
Sirtori
,
S.
,
Maier
,
G.
,
Novati
,
G.
, and
Miccoli
,
S.
,
1992
, “
A Galerkin Symmetric Boundary Element Method in Elasticity: Formulation and Implementation
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
255
282
.
29.
Kim
,
J.-H.
, and
Paulino
,
G. H.
,
2002
, “
Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
1903
1935
.
30.
Sutradhar
,
A.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
,
2002
, “
Transient Heat Conduction in Homogeneous and Non-homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
26
, pp.
119
132
.
You do not currently have access to this content.