Free space Green’s functions are derived for graded materials in which the thermal conductivity varies exponentially in one coordinate. Closed-form expressions are obtained for the steady-state diffusion equation, in two and three dimensions. The corresponding boundary integral equation formulations for these problems are derived, and the three-dimensional case is solved numerically using a Galerkin approximation. The results of test calculations are in excellent agreement with exact solutions and finite element simulations.
1.
Hirai, T., 1996, “Functionally Graded Materials,” Materials Science and Technology, R. J. Brook, ed., Vol. 17B of Processing of Ceramics, Part 2, VCH Verlagsgesellschaft mbH, Weinheim, Germany, pp. 292–341.
2.
Markworth
, A. J.
, Ramesh
, K. S.
, and Parks
, W. P.
Jr., 1995
, “Modelling Studies Applied to Functionally Graded Materials
,” J. Mater. Sci.
, 30
, pp. 2183
–2193
.3.
Paulino, G. H., Jin, Z.-H., and Dodds, R. H., 2003, “Failure of Functionally Graded Materials,” Comprehensive Structural Integrity, B. Karihaloo, R. Ritchie and I. Milne, eds., 2, Elsevier, New York, Chap. 13.
4.
Suresh, S., and Mortensen, A., 1998, Fundamentals of Functionally Graded Materials, The Institute of Materials, IOM Communications Ltd., London.
5.
Bonnet, M., 1995, Boundary Integral Equation Methods for Solids and Fluids, John Wiley and Sons, New York.
6.
Barton, G., 1999, Elements of Green’s Functions and Propagation, Oxford University Press, Oxford, UK.
7.
Ang
, W. T.
, Kusuma
, J.
, and Clements
, D. L.
, 1996
, “A Boundary Element Method for a Second Order Elliptic Partial Differential Equation With Variable Coefficients
,” Eng. Anal. Boundary Elem.
, 18
, pp. 311
–316
.8.
Clements
, D. L.
, 1980
, “A Boundary Integral Equation Method for the Numerical Solution of a Second Order Elliptic Equation With Variable Coefficients
,” J. Aust. Math. Soc. B, Appl. Math.
, 22
, pp. 218
–228
.9.
Shaw
, R. P.
, 1994
, “Green’s Functions for Heterogeneous Media Potential Problems
,” Eng. Anal. Boundary Elem.
, 13
, pp. 219
–221
.10.
Shaw
, R. P.
, and Makris
, N.
, 1992
, “Green’s Functions for Helmholtz and Laplace Equations in Heterogeneous Media
,” Eng. Anal. Boundary Elem.
, 10
, pp. 179
–183
.11.
Shaw
, R. P.
, and Manolis
, G. D.
, 2000
, “A Generalized Helmholtz Equation Fundamental Solution Using a Conformal Mapping and Dependent Variable Transformation
,” Eng. Anal. Boundary Elem.
, 24
, pp. 177
–188
.12.
Divo
, E.
, and Kassab
, A. J.
, 1998
, “Generalized Boundary Integral Equation for Heat Conduction in Non-homogeneous Media: Recent Developments on the Sifting Property
,” Eng. Anal. Boundary Elem.
, 22
, pp. 221
–234
.13.
Kassab
, A. J.
, and Divo
, E.
, 1996
, “A Generalized Boundary Integral Equation for Isotropic Heat Conduction With Spatially Varying Thermal Conductivity
,” Eng. Anal. Boundary Elem.
, 18
, pp. 273
–286
.14.
Bonnet
, M.
, and Guiggiani
, M.
, 1998
, Comments about the paper entitled “A Generalized Boundary Integral Equation for Isotropic Heat Conduction With Spatially Varying Thermal Conductivity,” by A. J. Kassab and E. Divo
, Eng. Anal. Boundary Elem.
, 22
, pp. 235
–240
.15.
Power
, H.
, 1997
, “On the Existence of Kassab and Divo’s Generalized Boundary Integral Equation Formulation for Isotropic Heterogeneous Steady State Heat Conduction Problems
,” Eng. Anal. Boundary Elem.
, 20
, pp. 341
–345
.16.
Vrettos, C., 1991, “Surface Green’s Functions for Continuously Nonhomogeneous Soil,” Computer Methods and Advances in Geomechanics, Beer, Booker, and Carter, eds., Rotterdam, Balkema, pp. 801–804.
17.
Li
, B. Q.
, and Evans
, J. W.
, 1991
, “Boundary Element Solution of Heat Convection-Diffusion Problems
,” J. Comput. Phys.
, 93
, pp. 255
–272
.18.
Wrobel, L. C., personal communication.
19.
Shaw
, R. P.
, and Gipson
, G. S.
, 1995
, “Interrelated Fundamental Solutions for Various Heterogeneous Potential, Wave and Advective-Diffusive Problems
,” Eng. Anal. Boundary Elem.
, 16
, pp. 29
–34
.20.
Martin, P. A., Richardson, J. D., Gray, L. J., and Berger, J., 2002, “On Green’s Function for a Three-Dimensional Exponentially-Graded Elastic Solid,” Proc. Royal Soc. London A, in press.
21.
Kellogg, O. D., 1953, Foundations of Potential Theory, Dover, New York.
22.
Olver, F. W. J., 1972, “Bessel Functions of Integer Order,” Handbook of Mathematical Functions, M. Abromowitz and I. A. Stegun, eds., National Bureau of Standards, Washington, D.C., Chap. 9, pp. 355–434.
23.
Konda
, N.
, and Erdogan
, F.
, 1994
, “The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,” Eng. Fract. Mech.
, 47
, pp. 533
–545
.24.
Bonnet
, M.
, Maier
, G.
, and Polizzotto
, C.
, 1998
, “Symmetric Galerkin Boundary Element Method
,” ASME Appl. Mech. Rev.
, 51
, pp. 669
–704
.25.
Hartmann
, F.
, Katz
, C.
, and Protopsaltis
, B.
, 1985, “Boundary Elements and Symmetry,” Ing.-Arch., 55, pp. 440–449.26.
Maier
, G.
, Diligenti
, M.
, and Carini
, A.
, 1991
, “A Variational Approach to Boundary Element Elastodynamic Analysis and Extension to Multidomain Problems
,” Comp. Meth. Appl. Eng.
, 92
, pp. 193
–213
.27.
Sirtori
, S.
, 1979
, “General Stress Analysis Method by Means of Integral Equations and Boundary Elements
,” Meccanica
, 14
, pp. 210
–218
.28.
Sirtori
, S.
, Maier
, G.
, Novati
, G.
, and Miccoli
, S.
, 1992
, “A Galerkin Symmetric Boundary Element Method in Elasticity: Formulation and Implementation
,” Int. J. Numer. Methods Eng.
, 35
, pp. 255
–282
.29.
Kim
, J.-H.
, and Paulino
, G. H.
, 2002
, “Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,” Int. J. Numer. Methods Eng.
, 53
, pp. 1903
–1935
.30.
Sutradhar
, A.
, Paulino
, G. H.
, and Gray
, L. J.
, 2002
, “Transient Heat Conduction in Homogeneous and Non-homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method
,” Eng. Anal. Boundary Elem.
, 26
, pp. 119
–132
.Copyright © 2003
by ASME
You do not currently have access to this content.