The paper presents an algebraic scheme to construct hierarchical divergence-free basis for velocity in incompressible fluids. A reduced system of equations is solved in the corresponding subspace by an appropriate iterative method. The basis is constructed from the matrix representing the incompressibility constraints by computing algebraic decompositions of local constraint matrices. A recursive strategy leads to a hierarchical basis with desirable properties such as fast matrix-vector products, a well-conditioned reduced system, and efficient parallelization of the computation. The scheme has been extended to particulate flow problems in which the Navier-Stokes equations for fluid are coupled with equations of motion for rigid particles suspended in the fluid. Experimental results of particulate flow simulations have been reported for the SGI Origin 2000.

1.
Hestenes
,
M. R.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Natl. Bur. Stand.
,
49
, pp.
409
436
.
2.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
,
7
, pp.
856
869
.
3.
Meijerink
,
J. A.
, and
Van der vorst
,
H. A.
,
1977
, “
An Iterative Solution Method for Linear Equation Systems of Which the Coefficient Matrix is a Symmetric M-Matrix
,”
Math. Comput.
,
31
, pp.
148
162
.
4.
Gustafson
,
K.
, and
Hartman
,
R.
,
1983
, “
Divergence-Free Bases for Finite Element Schemes in Hydrodynamics
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
20
(
4
), pp.
697
721
.
5.
Hall
,
C. A.
,
Peterson
,
J. S.
,
Porsching
,
T. A.
, and
Sledge
,
F. R.
,
1985
, “
The Dual Variable Method for Finite Element Discretizations of Navier-Stokes Equations
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
883
898
.
6.
Golub, G. H., and Van Loan, C. F., 1996, Matrix Computations 3rd Ed., Johns Hopkins University Press Ltd., London.
7.
Sarin
,
V.
, and
Sameh
,
A. H.
,
1998
, “
An Efficient Iterative Method for the Generalized Stokes Problem
,”
SIAM J. Sci. Comput. (USA)
,
19
(
1
), pp.
206
226
.
8.
Sameh
,
A. H.
, and
Sarin
,
V.
,
2002
, “
Parallel Algorithms for Indefinite Linear Systems
,”
Parallel Comput.
,
28
, pp.
285
299
.
9.
Sarin, V., 1997, “Efficient Iterative Methods for Saddle Point Problems,” Ph.D. thesis, University of Illinois, Urbana-Champaign.
10.
Dembo
,
R. S.
,
Eisenstat
,
S. C.
, and
Steihaug
,
T.
,
1982
, “
Inexact Newton Methods
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
19
(
2
), pp.
400
408
.
11.
Eisenstat
,
S. C.
, and
Walker
,
H. F.
,
1996
, “
Choosing the Forcing Terms in an Inexact Newton Method
,”
SIAM J. Sci. Comput. (USA)
,
17
(
1
), pp.
16
32
.
12.
Hu, H., 1996, “Direct Simulation of Flows of Solid-Liquid Mixtures,” Int. J. Multiphase Flow, 22.
13.
Smith, B. F., Gropp, W. D., McInnes, L. C., and Balay, S., 1995, “Petsc 2.0 Users Manual,” Technical Report TR ANL-95/11, Argonne National Laboratory.
14.
Gropp, W. D., Lusk, E., and Skjellum, A., 1994, Using MPI: Portable Parallel Programming With the Message Passing Interface, M.I.T. Press, Cambridge, MA.
15.
Shewchuk, J. R., 1996. “Triangle: Engineering a 2D Quality Mesh Generator and Delaunary Triangulator,” First Workshop on Applied Computational Geometry, ACM, Philadelphia, PA, pp. 124–133.
16.
Karypis, G., and Kumar, V., 1996. “Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs,” Technical Report 96-036, University of Minnesota.
17.
Knepley, M. G., Sarin, V., and Sameh, A. H., 1998. “Parallel Simulation of Particulate Flows,” Proc. of the 5th Intl. Symp., IRREGULAR ’98, LNCS 1457, Springer, Berlin, pp. 226–237.
You do not currently have access to this content.