For the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations for flow problems, we present in this paper a comparative study of the stabilization parameters defined in different ways. The stabilization parameters are closely related to the local length scales (“element length”), and our comparisons include parameters defined based on the element-level matrices and vectors, some earlier definitions of element lengths, and extensions of these to higher-order elements. We also compare the numerical viscosities generated by these stabilized formulations with the eddy viscosity associated with a Smagorinsky turbulence model that is based on element length scales.

1.
Hughes, T. J. R., and Brooks, A. N., 1979, “A Multi-dimensional Upwind Scheme With no Crosswind Diffusion,” Finite Element Methods for Convection Dominated Flows, T. J. R. Hughes, ed., ASME, New York, AMD-Vol. 34, pp. 19–35.
2.
Tezduyar, T. E., and Hughes, T. J. R., 1983, “Finite Element Formulations for Convection Dominated Flows With Particular Emphasis on the Compressible Euler Equations,” AIAA Paper No. 83-0125.
3.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
, pp.
173
189
.
4.
Tezduyar
,
T. E.
,
1991
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.
5.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
,
1993
, “
Parallel Finite-Element Computation of 3D Flows
,”
IEEE Computer
,
26
, pp.
27
36
.
6.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
7.
Tezduyar
,
T. E.
, and
Park
,
Y. J.
,
1986
, “
Discontinuity Capturing Finite Element Formulations for Nonlinear Convection-Diffusion-Reaction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
59
, pp.
307
325
.
8.
Tezduyar
,
T. E.
, and
Ganjoo
,
D. K.
,
1986
, “
Petrov-Galerkin Formulations With Weighting Functions Dependent Upon Spatial and Temporal Discretization: Applications to Transient Convection-Diffusion Problems
,”
Comput. Methods Appl. Mech. Eng.
,
59
, pp.
49
71
.
9.
Franca
,
L. P.
,
Frey
,
S. L.
, and
Hughes
,
T. J. R.
,
1992
, “
Stabilized Finite Element Methods: I. Application to the Advective-Diffusive Model
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
253
276
.
10.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
,
2000
, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
411
430
.
11.
Tezduyar, T. E., 2001, “Adaptive Determination of the Finite Element Stabilization Parameters,” Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), University of Wales, Swansea, Wales.
12.
Tezduyar, T. E., 2001, “Stabilized Finite Element Formulations and Interface-Tracking and Interface-Capturing Techniques for Incompressible Flows,” Proceedings of the Workshop on Numerical Simulations of Incompressible Flows, Half Moon Bay, CA, to appear.
13.
Akin, J. E, 2001, Finite Element Analysis With Error Estimates, Academic Press, San Diego, CA, submitted for publication.
14.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
, pp.
99
165
.
15.
Kato, C., and Ikegawa, M., 1991, “Large Eddy Simulation of Unsteady Turbulent Wake of a Circular Cylinder Using the Finite Element Method,” Advances in Numerical Simulation of Turbulent Flows, I. Celik, T. Kobayashi, K. N. Ghia, and J. Kurokawa, eds., ASME, New York, FED-Vol. 117, pp. 49–56.
You do not currently have access to this content.