Classical Timoshenko beam theory includes a shear correction factor κ which is often used to match natural vibrational frequencies of the beam. In this note, a number of static and dynamic examples are considered which provide a theoretical basis for specifying κ=1. Within the context of Cosserat theory, natural frequencies of the beam can be matched by appropriate specification of the director inertia coefficients with κ=1.

1.
Timoshenko
,
S. P.
,
1921
, “
On the Corrections for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
,
41
, pp.
744
746
.
2.
Timoshenko
,
S. P.
,
1922
, “
On the Transverse Vibrations of Bars of Uniform Cross Section
,”
Philos. Mag.
,
43
, pp.
125
131
.
3.
Kaneko
,
T.
,
1975
, “
On Timoshenko’s Correction for Shear in Vibrating Beams
,”
J. Phys. D
,
8
, pp.
1927
1936
.
4.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
, pp.
87
92
.
5.
Hutchinson
,
J. R.
,
2001
, closure to “
On Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
, pp.
960
961
.
6.
Stephen
,
N. G.
,
2001
, discussion of “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
, pp.
959
960
.
7.
Green
,
A. E.
,
Naghdi
,
P. M.
, and
Wenner
,
M. L.
,
1974
, “
On the Theory of Rods—I. Derivation From the Three-Dimensional Equations
,”
Proc. R. Soc. London, Ser. A
,
337
, pp.
451
483
.
8.
Green
,
A. E.
,
Naghdi
,
P. M.
, and
Wenner
,
M. L.
,
1974
, “
On the Theory of Rods—II. Developments by Direct Approach
,”
Proc. R. Soc. London, Ser. A
,
337
, pp.
451
483
.
9.
Naghdi
,
P. M.
, and
Rubin
,
M. B.
,
1984
, “
Constrained Theories of Rods
,”
J. Elast.
,
14
, pp.
343
361
.
10.
Rubin
,
M. B.
,
1996
, “
Restrictions on Nonlinear Constitutive Equations for Elastic Rods
,”
J. Elast.
,
44
, pp.
9
36
.
11.
Rubin, M. B., 2000, Cosserat Theories: Shells, Rods and Points (Solid Mechanics and its Applications), 79, Kluwer, The Netherlands.
12.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
,
33
, pp.
335
340
.
13.
Rubin, M. B., 2001, “A Simple Derivation of Cosserat Theories of Shells, Rods and Points,” Advances in the Mechanics of Plates and Shells (The Avinoam Libai Anniversary Volume, Solid Mechanics and Its Applications), 88, Kluwer, Dordrecht, pp. 277–294.
14.
O’Reilly
,
O. M.
,
1998
, “
On Constitutive Relations for Elastic Rods
,”
Int. J. Solids Struct.
,
35
, pp.
1009
1024
.
15.
Rubin
,
M. B.
,
1986
, “
Free Vibration of a Rectangular Parallelepiped Using the Theory of a Cosserat Point
,”
ASME J. Appl. Mech.
,
53
, pp.
45
50
.
You do not currently have access to this content.