A procedure for designing a feedback control to asymptotically stabilize with probability one quasi-integrable Hamiltonian system is proposed. First, a set of averaged Ito^ stochastic differential equations for controlled first integrals is derived from given equations of motion of the system by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Second, a dynamical programming equation for infinite horizon performance index with unknown cost function is established based on the stochastic dynamical programming principle. Third, the asymptotic stability with probability one of the optimally controlled system is analyzed by evaluating the largest Lyapunov exponent of the fully averaged Ito^ equations for the first integrals. Finally, the cost function and feedback control law are determined by the requirement of stabilization of the system. An example is worked out in detail to illustrate the application of the proposed procedure and the effect of optimal control on the stability of the system.

1.
Kushner, J., 1967, Stochastic Stability and Control, Academic Press, New York.
2.
Khasminskii, R. Z., 1980, Stochastic Stability of Differential Equation, Sijthoff & Noordhoff, Alphen ann den Rijn.
3.
Florchinger
,
D.
,
1995
, “
Lyapunov-Like Technique for Stochastic Stability
,”
SIAM J. Control Optim.
,
33
, pp.
1151
1169
.
4.
Florchinger
,
D.
,
1997
, “
Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method
,”
SIAM J. Control Optim.
,
35
, pp.
500
511
.
5.
Pan
,
Z.
, and
Basar
,
T.
,
1999
, “
Backstepping Controller Design for Nonlinear Stochastic Systems Under a Risk-Sensitive Cost Criterion
,”
SIAM J. Control Optim.
,
37
, pp.
957
995
.
6.
Deng
,
H.
, and
Krstic
,
M.
,
1997
, “
Stochastic Nonlinear Stabilization—Part II: Inverse Optimality
,”
Syst. Control Lett.
,
32
, pp.
151
159
.
7.
Deng
,
H.
, and
Krstic
,
M.
,
1999
, “
Output-Feedback Stochastic Nonlinear Stabilization
,”
IEEE Trans. Autom. Control
,
44
, pp.
328
333
.
8.
Deng
,
H.
, and
Krstic
,
M.
,
2000
, “
Output-Feedback Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance
,”
Syst. Control Lett.
,
39
, pp.
173
182
.
9.
Tsinias
,
J.
,
1998
, “
Stochastic Input-to-State Stability and Applications to Global Feedback Stabilization
,”
Int. J. Control
,
71
, pp.
905
930
.
10.
Oseledec
,
V. I.
,
1968
, “
A Multiplicative Ergodic Theorem: Lyapunov Characteristic Number for Dynamical Systems
,”
Trans. Moscow Mathematical Society
,
19
, pp.
197
231
.
11.
Khasminskii
,
R. Z.
,
1967
, “
Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems
,”
Theor. Probab. Appl.
,
12
, pp.
144
147
.
12.
Ariaratnam
,
S. T.
, and
Xie
,
W. C.
,
1992
, “
Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under Real Noise Excitation
,”
ASME J. Appl. Mech.
,
59
, pp.
664
673
.
13.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
1999
, “
Lyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
66
, pp.
211
217
.
14.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
975
984
.
15.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
,
2000
, “
Lyapunov Exponent and Almost Sure Asymptotic Stability of Quasi-Linear Gyroscopic Systems
,”
Int. J. Non-Linear Mech.
,
35
, pp.
645
655
.
16.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
,
1999
, “
Optimal Nonlinear Feedback Control of Quasi Hamiltonian Systems
,”
Sci. China, Ser. A: Math., Phys., Astron.
,
42
, pp.
1213
1219
.
17.
Zhu
,
W. Q.
,
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Ko
,
J. M.
,
2000
, “
Optimal Nonlinear Stochastic Control of Hysteretic Systems
,”
J. Eng. Mech.
,
126
, pp.
1027
1032
.
18.
Zhu
,
W. Q.
,
Ying
,
Z. G.
, and
Soong
,
T. T.
,
2001
, “
An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,”
Nonlinear Dyn.
,
24
, pp.
31
51
.
19.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
157
164
.
20.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Equations
,”
Int. J. Eng. Sci.
,
3
, pp.
213
229
.
21.
Khasminskii
,
R. Z.
,
1968
, “
On the Averaging Principle for Stochastic Differential Equation
,”
Kibernetika
,
4
, pp.
260
279
(in Russian).
22.
Kushner
,
J.
,
1978
, “
Optimality Conditions for the Average Cost Per Unit Time Problem With a Diffusion Model
,”
SIAM J. Control Optim.
,
16
, pp.
330
346
.
23.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structure Dynamics, Advanced Theory and Applications, McGraw-Hill, New York.
You do not currently have access to this content.