This paper derives, for the first time, the complete set of three-dimensional Green’s functions (displacements, stresses, and derivatives of displacements and stresses with respect to the source point), or the generalized Mindlin solutions, in an anisotropic half-space with general boundary conditions on the flat surface Applying the Mindlin’s superposition method, the half-space Green’s function is obtained as a sum of the generalized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin’s complementary solution. While the generalized Kelvin solution is in an explicit form, the Mindlin’s complementary part is expressed in terms of a simple line-integral over [0,π]. By introducing a new matrix K, which is a suitable combination of the eigenmatrices A and B, Green’s functions corresponding to different boundary conditions are concisely expressed in a unified form, including the existing traction-free and rigid boundaries as special cases. The corresponding generalized Boussinesq solutions are investigated in details. In particular, it is proved that under the general boundary conditions studied in this paper, the generalized Boussinesq solution is still well-defined. A physical explanation for this solution is also offered in terms of the equivalent concept of the Green’s functions due to a point force and an infinitesimal dislocation loop. Finally, a new numerical example for the Green’s functions in an orthotropic half-space with different boundary conditions is presented to illustrate the effect of different boundary conditions, as well as material anisotropy, on the half-space Green’s functions.
Three-Dimensional Green’s Functions in an Anisotropic Half-Space With General Boundary Conditions
11
11
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 19, 2001; final revision, Mar. 5, 2002. Associate Editor: D. A. Kouris. Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of Mechanical and Environmental Engineering, University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Pan, E. (January 23, 2003). "Three-Dimensional Green’s Functions in an Anisotropic Half-Space With General Boundary Conditions ." ASME. J. Appl. Mech. January 2003; 70(1): 101–110. https://doi.org/10.1115/1.1532570
Download citation file: