This paper derives, for the first time, the complete set of three-dimensional Green’s functions (displacements, stresses, and derivatives of displacements and stresses with respect to the source point), or the generalized Mindlin solutions, in an anisotropic half-space z>0 with general boundary conditions on the flat surface z=0. Applying the Mindlin’s superposition method, the half-space Green’s function is obtained as a sum of the generalized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin’s complementary solution. While the generalized Kelvin solution is in an explicit form, the Mindlin’s complementary part is expressed in terms of a simple line-integral over [0,π]. By introducing a new matrix K, which is a suitable combination of the eigenmatrices A and B, Green’s functions corresponding to different boundary conditions are concisely expressed in a unified form, including the existing traction-free and rigid boundaries as special cases. The corresponding generalized Boussinesq solutions are investigated in details. In particular, it is proved that under the general boundary conditions studied in this paper, the generalized Boussinesq solution is still well-defined. A physical explanation for this solution is also offered in terms of the equivalent concept of the Green’s functions due to a point force and an infinitesimal dislocation loop. Finally, a new numerical example for the Green’s functions in an orthotropic half-space with different boundary conditions is presented to illustrate the effect of different boundary conditions, as well as material anisotropy, on the half-space Green’s functions.

1.
Barber, J. R., 1992, Elasticity, Kluwer Academic Publishers, Dordrecht, The Netherlands.
2.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, Oxford, UK.
3.
Davis, R. O., and Selvadurai, A. P. S., 1996, Elasticity and Geomechanics, Cambridge University Press, Cambridge, MA.
4.
Barnett
,
D. M.
, and
Lothe
,
J.
,
1975
, “
Line Force Loadings on Anisotropic Half-Spaces and Wedges
,”
Phys. Norv.
,
8
, pp.
13
22
.
5.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhof, Dordrecht, The Netherlands.
6.
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1994
, “
Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments
,”
J. Mech. Phys. Solids
,
42
, pp.
1223
1245
.
7.
Liao
,
J.J.
, and
Wang
,
C. D.
,
1998
, “
Elastic Solutions for a Transversely Isotropic Half-Space Subjected to a Point Load
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
22
, pp.
425
447
.
8.
Wang
,
C. D.
, and
Liao
,
J. J.
,
1999
, “
Elastic Solutions for a Transversely Isotropic Half-Space Subjected to Buried Asymmetric-Loads
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
23
, pp.
115
139
.
9.
Willis
,
J. R.
,
1966
, “
Hertzian Contact of Anisotropic Bodies
,”
J. Mech. Phys. Solids
,
14
, pp.
163
176
.
10.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sithoff and Noordhoff, The Netherlands.
11.
Barber
,
J. R.
, and
Ciavarella
,
M.
,
2000
, “
Contact Mechanics
,”
Int. J. Solids Struct.
37
, pp.
29
43
.
12.
Yu
,
H. Y.
,
2001
, “
A Concise Treatment of Indentation Problems in Transversely Isotropic Half Spaces
,”
Int. J. Solids Struct.
,
38
, pp.
2213
2232
.
13.
Mindlin
,
R. D.
,
1936
, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Physics (N.Y.)
,
7
, pp.
195
202
.
14.
Pan
,
Y. C.
, and
Chou
,
T. W.
,
1979
, “
Green’s Function Solutions for Semi-Infinite Transversely Isotropic Materials
,”
Int. J. Eng. Sci.
17
, pp.
545
551
.
15.
Barber
,
J. R.
, and
Sturla
,
F. A.
,
1992
, “
Application of the Reciprocal Theorem to Some Problems for the Elastic Half-Space
J. Mech. Phys. Solids
,
40
, pp.
17
25
.
16.
Wu
,
K. C.
,
1998
, “
Generalization of the Stroh Formalism to 3-Dimensional Anisotropic Elasticity
,”
J. Elast.
,
51
, pp.
213
225
.
17.
Pan
,
E.
, and
Yuan
,
F. G.
,
2000
, “
Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,”
Int. J. Solids Struct.
,
37
, pp.
5329
5351
.
18.
Yu
,
H. Y.
,
Sanday
,
S. C.
,
Rath
,
B. B.
, and
Chang
,
C. I.
,
1995
, “
Elastic Fields due to Defects in Transversely Isotropic Half Spaces
,”
Proc. R. Soc. London, Ser. A
,
A449
, pp.
1
30
.
19.
Dundurs
,
J.
, and
Hetenyi
,
M.
,
1965
, “
Transmission of Force Between Two Semi-Infinite Solids
,”
ASME J. Appl. Mech.
,
32
, pp.
671
674
.
20.
Fabrikant, I., 1989, Applications of Potential Theory in Mechanics: A Selection of New Results, Kluwer Academic Publishers, Dordrecht, The Netherlands.
21.
Fabrikant, V. I., 1991, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, Dordrecht, The Netherlands.
22.
Craig, R. F., 1992, Soil Mechanics, 5th Ed., Chapman & Hall, New York.
23.
Timoshenko, S., and Woinowsky-Krieger, S., 1987 Theory of Plates and Shells, 2nd Ed., McGraw-Hill, New York.
24.
Shilkrot
,
L. E.
, and
Srolovitz
,
D. J.
,
1998
, “
Elastic Analysis of Finite Stiffness Bimaterial Interfaces: Application to Dislocation-Interface Interactions
,”
Acta Mater.
,
46
, pp.
3063
3075
.
25.
Gharpuray
,
V. M.
,
Dundurs
,
J.
, and
Keer
,
L. M.
,
1991
, “
A Crack Terminating at a Slipping Interface Between Two Materials
,”
ASME J. Appl. Mech.
,
58
, pp.
960
963
.
26.
Davies
,
J. H.
, and
Larkin
,
I. A.
,
1994
, “
Theory of Potential Modulation in Lateral Surface Superlattices
,”
Phys. Rev. B
,
B49
, pp.
4800
4809
.
27.
Larkin
,
I. A.
,
Davies
,
J. H.
,
Long
,
A. R.
, and
Cusco
,
R.
,
1997
, “
Theory of Potential Modulation in Lateral Surface Superlattices, II. Piezoelectric Effect
,”
Phys. Rev. B
,
B56
, pp.
242
15
.
28.
Holy
,
V.
,
Springholz
,
G.
,
Pinczolits
,
M.
, and
Bauer
,
G.
,
1999
, “
Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices
,”
Phys. Rev. Lett.
,
83
, pp.
356
359
.
29.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane
,”
ASME J. Appl. Mech.
,
66
, pp.
315
322
.
30.
Ru
,
C. Q.
,
2000
, “
Eshelby’s Problem for Two-Dimensional Piezoelectric Inclusion of Arbitrary Shapem
,”
Proc. R. Soc. London, Ser. A
,
A456
, pp.
1051
1068
.
31.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field on an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
A241
, pp.
376
396
.
32.
Ting
,
T. C. T.
,
2000
, “
Recent Developments in Anisotropic Elasticity
,”
Int. J. Solids Struct.
,
37
, pp.
401
409
.
33.
Ting, T. C. T., 2001, “The Wonderful World of Anisotropic Elasticity—An Exciting Theme Park to Visit,” Proc. 4th Pacific International Conference on Aerospace Science and Technology,” pp. 1–7.
34.
Ting
,
T. C. T.
, and
Wang
,
M. Z.
,
1992
, “
Generalized Stroh Formalism for Anisotropic Elasticity for General Boundary Conditions
,”
Acta Mech. Sin.
,
8
, pp.
193
207
.
35.
Wang
,
M. Z.
,
Ting
,
T. C. T.
, and
Yan
,
G.
,
1993
, “
The Anisotropic Elastic Semi-Infinite Strip
,”
Q. Appl. Math.
,
51
, pp.
283
297
.
36.
Tewary
,
V. K.
,
1995
, “
Computationally Efficient Representation for Elastostatic and Elastodynamic Green’s Functions
,”
Phys. Rev. B
,
51
, pp.
695
15
.
37.
Ting
,
T. C. T.
, and
Lee
,
V. G.
,
1997
, “
The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
,
50
, pp.
407
426
.
38.
Sales
,
M. A.
, and
Gray
,
L. J.
,
1998
, “
Evaluation of the Anisotropic Green’s Function and its Derivatives
,”
Comput. Struct.
,
69
, pp.
247
254
.
39.
Tonon
,
F.
,
Pan
,
E.
, and
Amadei
,
B.
,
2001
, “
Green’s Functions and Boundary Element Method Formulation for 3D Anisotropic Media
,”
Comput. Struct.
,
79
, pp.
469
482
.
40.
Pan
,
E.
,
1997
, “
A General Boundary Element Analysis of 2-D Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
,
88
, pp.
41
59
.
41.
Pan, E., 2002, “Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials,” J. Appl. Math Phys., pp. 815–838.
42.
Walker
,
K. P.
,
1993
, “
Fourier Integral Representation of the Green’s Function for an Anisotropic Elastic Half-Space
,”
Proc. R. Soc. London, Ser. A
,
A443
, pp.
367
389
.
43.
Love, A. E. H., 1994, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover Publication, New York.
44.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, McGraw-Hill, New York.
45.
Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations, 2nd Ed., John Wiley and Sons, New York.
46.
Pan
,
E.
,
1991
, “
Dislocation in an Infinite Poroelastic Medium
,”
Acta Mech.
,
87
, pp.
105
115
.
47.
Paget
,
D. F.
,
1981
, “
The Numerical Evaluation of Hadamard Finite-Part Intervals
,”
Numer. Math.
,
36
, pp.
447
453
.
48.
Monegato
,
G.
,
1994
, “
Numerical Evaluation of Hypersingular Integrals
,”
J. Comput. Appl. Math.
,
50
, pp.
9
31
.
49.
Mastronardi
,
N.
, and
Occorsio
,
D.
,
1996
, “
Some Numerical Algorithms to Evaluate Hadamard Finite-Part Integrals
,”
J. Comput. Appl. Math.
,
70
, pp.
75
93
.
50.
Pan, E., and Yang, B., 2003, “Three-Dimensional Interfacial Green’s Functions in Anisotropic Bimaterials,” Appl. Math. Model., in press.
You do not currently have access to this content.