For elastic materials containing fluid-saturated porosity, the pore compressibility is a measure of the deformation of a unit pore volume in response to a change in fluid pressure. Rather than being measured, this quantity has been routinely set equal to an effective solid compressibility, since this equality is exact whenever a single solid component is present. However, we show that the pore compressibility and solid compressibility may be uncorrelated in general. In certain special circumstances they do not even share the same sign. Although thermodynamic and mechanical stability constraints cause solid and drained-frame bulk moduli of a porous composite to be positive and bounded by component properties, the pore compressibility is unconstrained and, therefore, can have negative values. For special realizable model materials, the value of the pore compressibility can be found using an exact expression valid for a composite made up of one fluid and two solid components, i.e., two porous components. In order to quantify how various factors affect the sign and magnitude of the pore compressibility, pore compressibilities were calculated for models that used two porous components having the microgeometry of an assemblage of concentric spheres. This model implicitly assumes the pores are on a much smaller length scale than the concentric spheres. Modeling results show that with the stiffer porous material forming the outer shells of the concentric spheres, the pore compressibility of such materials is negative when solid component bulk moduli differ by at least a factor of 5, if, in addition, the porosities and drained frame moduli of the two porous components are relatively low. Negative pore compressibilities were found for realizable models whose two porous constituents had the properties of silicon nitride and either sandstone or clay. For models using combinations of alumina and glass foam properties, pore compressibilities were non-negative but smaller than the compressibilities of the solid components.

1.
Adams
L. H.
, and
Williamson
E. D.
,
1923
, “
The Compressibility of Minerals and Rocks at High Pressure
,”
Journal of the Franklin Institute
, Vol.
195
, pp.
475
529
.
2.
Bernal
J. D.
, and
Mason
J.
,
1960
, “
Co-ordination of Randomly Packed Spheres
,”
Nature
, Vol.
188
, No.
4754
, pp.
910
911
.
3.
Berryman
J. G.
,
1986
, “
Effective Medium Approximation for Elastic Constants of Porous Solids with Microscopic Heterogeneity
,”
Journal of Applied Physics
, Vol.
59
, pp.
1136
1140
.
4.
Berryman
J. G.
,
1992
a, “
Single-Scattering Approximations for Coefficients in Biot’s Equations of Poroelasticity
,”
Journal of the Acoustical Society of America
, Vol.
91
, No.
2
, pp.
551
571
.
5.
Berryman
J. G.
,
1992
b, “
Effective Stress for Transport Properties of Inhomogeneous Porous Rock
,”
Journal of Geophysical Research
, Vol.
97
, No.
B12
, pp.
409
17
.
6.
Berryman, J. G., 1993a, “Mixture Theories for Rock Properties,” Handbook of Physical Constants, T. J. Ahrens, ed., American Geophysical Union, Washington, D.C., in press.
7.
Berryman, J. G., 1993b, “Role of Porosity in Estimates of Composite Elastic Constants,” Composite Material Technology, PD-Vol. 53, D. Hui, T. J. Kozik, and O. O. Ochoa, eds., ASME, New York, pp. 223–235.
8.
Berryman
J. G.
, and
Milton
G. W.
,
1991
, “
Exact Results for Generalized Gassmann’s Equations in Composite Porous Media with Two Constituents
,”
Geophysics
, Vol.
56
, No.
12
, pp.
1950
1960
.
9.
Berryman
J. G.
, and
Milton
G. W.
,
1992
, “
Exact Results in Linear Thermomechanics of Fluid-Saturated Porous Media
,”
Applied Physics Letters
, Vol.
61
, No.
17
, pp.
2030
2032
.
10.
Biot
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
Journal of the Acoustical Society of America
, Vol.
28
, No.
2
, pp.
168
178
.
11.
Biot
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
Journal of Applied Physics
, Vol.
33
, No.
4
, pp.
1482
1498
.
12.
Biot
M. A.
, and
Willis
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
24
, pp.
594
601
.
13.
Birch
F.
,
1960
, “
The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 1
,”
Journal of Geophysical Research
, Vol.
65
, pp.
1083
1102
.
14.
Birch
F.
,
1961
, “
The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 2
,”
Journal of Geophysical Research
, Vol.
66
, pp.
2199
2224
.
15.
Birch
F.
, and
Law
R. R.
,
1935
, “
Measurement of Compressibility at High Pressures and High Temperatures
,”
Bulletin of the Geological Society of America
, Vol.
46
, pp.
1219
1250
.
16.
Blangy
J. P.
,
Strandenes
S.
,
Moos
D.
, and
Nur
A.
,
1993
, “
Ultrasonic Velocities in Sands-Revisited
,”
Geophysics
, Vol.
58
, No.
3
, pp.
344
356
.
17.
Brace
W. F.
,
1965
, “
Some New Measurements of Linear Compressibility of Rocks
,”
Journal of Geophysical Research
, Vol.
70
, No.
2
, pp.
391
398
.
18.
Brown
R. J. S.
, and
Korringa
J.
,
1975
, “
On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid
,”
Geophysics
, Vol.
40
, No.
4
, pp.
608
616
.
19.
Castagna
J. P.
,
Batzle
M. L.
, and
Eastwood
R. L.
,
1985
, “
Relationships between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks
,”
Geophysics
, Vol.
50
, No.
4
, pp.
571
581
.
20.
Cheng, C. H. A., 1978, “Seismic Velocities in Porous Rocks: Direct and Inverse Problems,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Coyner, K. B., 1984, “Effects of Stress, Pore Pressure, and Pore Fluids on Bulk Strain, Velocity, and Permeability of Rocks,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
Fate
W. A.
,
1975
, “
High Temperature Elastic Moduli of Polycrystalline Silicon Nitride
,”
Journal of Applied Physics
, Vol.
46
, pp.
2375
2377
.
23.
Fatt
I.
,
1958
, “
Pore Volume Compressibilities of Sandstone Reservoir Rocks
,”
Society of Petroleum Engineers Transactions, AIME
, Vol.
213
, pp.
362
364
.
24.
Fatt
I.
,
1959
, “
The Biot-Willis Elastic Coefficients for a Sandstone
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
26
, pp.
296
297
.
25.
Gassmann
F.
,
1951
, “
U¨ber die elastizita¨t poro¨ser medien
,”
Veirteljahrsschrift der Naturforschenden Gesellschaft in Zu¨rich
, Vol.
96
, pp.
1
23
.
26.
Green
D. H.
, and
Wang
H. F.
,
1986
, “
Fluid Pressure Response to Undrained Compression in Saturated Sedimentary Rock
,”
Geophysics
, Vol.
51
, No.
4
, pp.
948
956
.
27.
Greenwald, R. F., 1980, “Volumetric Response of Porous Media to Pressure Variations,” Ph.D. Thesis, University of California, Berkeley, CA.
28.
Hall
H. H.
,
1953
, “
Compressibility of Reservoir Rocks
,”
Society of Petroleum Engineers Transactions, AIME
, Vol.
198
, pp.
309
311
.
29.
Hashin
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
29
, pp.
143
150
.
30.
Hashin
Z.
, and
Shtrikman
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
Journal of the Mechanics and Physics of Solids
, Vol.
11
, pp.
127
140
.
31.
Hasselman
D. P. H.
, and
Fulrath
R. M.
,
1965
, “
Effect of Alumina Dispersions on Young’s Modulus of a Glass
,”
Journal of the American Ceramic Society
, Vol.
48
, pp.
218
219
.
32.
Hill
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proceedings of the Physical Society of London
, Vol.
A65
, pp.
349
354
.
33.
Hughes
D. S.
, and
Cook
C. E.
,
1953
, “
The Effect of Pressure on the Reduction of Pore Volume of Consolidated Sanstones
,”
Geophysics
, Vol.
18
, pp.
298
309
.
34.
Keskar
N. R.
, and
Chelikowsky
J. R.
,
1993
, “
Anomalous elastic behavior in crystalline silica
,”
Phys. Rev. B
, Vol.
48
, No.
22
, pp.
227
16
.
35.
Lakes
R.
,
1987
, “
Foam Structures with a Negative Poisson’s Ratio
,”
Science
, Vol.
235
, pp.
1038
1040
.
36.
Milton
G. W.
,
1992
, “
Composite Materials with Poisson’s Ratios Close to—1
,”
Journal of the Mechanics and Physics of Solids
, Vol.
40
, No.
5
, pp.
1105
1137
.
37.
Newman
G. H.
,
1973
, “
Pore-Volume Compressibility of Consolidated, Friable, and Unconsolidated Reservoir Rocks under Hydrostatic Loading
,”
Journal of Petroleum Technology
, Vol.
25
, pp.
129
134
.
38.
Nur
A.
, and
Byerlee
J. D.
,
1971
, “
An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids
,”
Journal of Geophysical Research
, Vol.
76
, No.
26
, pp.
6414
6419
.
39.
Nye, J. F., 1957, Physical Properties of Crystals-Their Representation by Tensors and Matrices, Oxford University Press, Oxford, U.K.
40.
Reuss
A.
,
1929
, “
Berechnung der Fliessgrense von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle
,”
Zeitschrift fur Angewandte Mathematik and Mechanik
, Vol.
9
, pp.
49
58
.
41.
Rice
J. R.
, and
Cleary
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media with Compressible Constituents
,”
Reviews of Geophysics and Space Physics
, Vol.
14
, No.
2
, pp.
227
241
.
42.
Sampath
K.
,
1982
, “
A New Method to Measure Pore Volume Compressibility of Sandstones
,”
Journal of Petroleum Technology
, Vol.
34
, No.
6
, pp.
1360
1362
.
43.
Van der Knaap
W.
,
1959
, “
Nonlinear Behavior of Elastic Porous Media
,”
Society of Petroleum Engineers Transactions, AIME
, Vol.
216
, pp.
179
186
.
44.
Voigt, W., 1928, Lehrbuch der Kristallphysik, Teubner, Leipzig.
45.
Walsh
J. B.
,
Brace
W. F.
, and
England
A. W.
,
1965
, “
Effect of Porosity on Compressibility of Glass
,”
Journal of the American Ceramic Society
, Vol.
48
, No.
12
, pp.
605
608
.
46.
Yeganeh-Haeri
A.
,
Weidner
D. J.
, and
Parise
J. B.
,
1992
, “
Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson’s Ratio
,”
Science
, Vol.
257
, pp.
650
652
.
47.
Zimmerman
R. W.
,
Somerton
M. H.
, and
King
M. S.
,
1986
, “
Compressibility of Porous Rocks
,”
Journal of Geophysical Research
, Vol.
91
, No.
B12
, pp.
765
12
.
48.
Zisman
W. A.
,
1933
, “
Compressibility and Anisotropy of Rocks at or Near the Earth’s Surface
,”
Proceedings of the National Academy of Sciences
, Vol.
19
, pp.
666
680
.
This content is only available via PDF.
You do not currently have access to this content.