By 2010, 60 million people will have glaucoma, the second leading cause of blindness worldwide [1]. The disease is characterized by a progressive degeneration of the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. It is well know that elevated intraocular pressure (IOP) is a risk factor in the damage to the RGCs [3–5], but the relationship between the mechanical properties of the ocular connective tissue and how it affects cellular function is not well characterized. The cornea and the sclera are collage-rich structures that comprise the outer load-bearing shell of the eye. Their preferentially aligned collagen lamellae provide mechanical strength to resist ocular expansion. Previous uniaxial tension studies suggest that altered viscoelastic material properties of the eye wall play a role in glaucomatous damage [6].

This content is only available via PDF.
You do not currently have access to this content.