For some applications of musculoskeletal modeling it may be important to simulate the passive responses of joint range-of-motion limits. For example, Lemay and Crago [1] enforced dynamic limits of flexion and extension in an elbow model. In cases such as the elbow where the joint can be modeled as a simple hinge, the range of motion can be easily specified in terms of a minimum and maximum joint angle, and the motion limits can be enforced using simple visco-elastic restraining torques against any limit violations. For joints such as the shoulder girdle, however, which involve multiple articulating bones and multiple degrees of freedom, dynamic enforcement of joint range-of-motion limits requires a more complex approach.

This content is only available via PDF.
You do not currently have access to this content.