Tissue engineering offers an attractive alternative to direct repair or reconstruction of soft tissue injuries. Tissue engineered constructs containing mesenchymal stem cells (MSCs) seeded in commercially available type I collagen sponges (P1076, Kensey Nash Corporation, Exton, PA) are currently being used within our laboratory to repair tendon injuries in rabbit models [1]. When introduced into the wound site, mechanically stimulated stem cell-collagen sponge constructs exhibit 50% greater maximum force and stiffness at 12 weeks compared to values for static controls [1]. However, these constructs often lack the maximum force sufficient to resist the peak in vivo forces acting on the repair site [2, 3]. Insufficient repair biomechanics can be attributed to the poor initial mechanical resistance provided by the collagen sponges to replace the function of the lost tendon before its degradation and replacement with new extracellular matrix. This current study seeks to identify a biologically-derived scaffold with improved mechanical integrity that could be used in stem cell-based tissue engineered constructs for tendon repair.

This content is only available via PDF.
You do not currently have access to this content.