Strengthening of pipelines and piping systems under extreme loading conditions increases their operation safety level towards safeguarding their structural integrity. Motivated by the structural integrity of pipelines and piping systems, the present study aims at investigating the effect of Carbon Fiber Reinforced Plastic (CFRP) wrapping on the mechanical response of cyclically-loaded steel pipe elbows. Based on experimental testing results, a finite element model is developed, which simulates reinforced and non-reinforced pipe elbows specimens subjected to low-cyclic fatigue. For the description of the material nonlinearities, an efficient cyclic-plasticity material model is also employed, capable of describing both the yield plateau region of the steel stress-strain curve and the Bauschinger effect that appears under reverse plastic loading conditions. The results from the numerical models are compared successfully with the experimental data. Furthermore, a parametric analysis is conducted in order to examine the effect of internal pressure on the structural behavior of unreinforced and reinforced elbows, subjected to cyclic loading.

This content is only available via PDF.
You do not currently have access to this content.