The storage of hydrogen in a compressed gaseous form offers the simplest solution in terms of infrastructure requirements and has become the most highly developed hydrogen storage method. Low cost and large vessels for bulk hydrogen storage are needed at central production plants, geologic storage sites, terminals and refueling stations. A multifunctional steel layered vessel (MSLV) for stationary hydrogen storage with maximum design pressure of 98 MPa has been developed. First of all, the basic structure and characteristics of the vessel were introduced. Secondly, the stress in the cylindrical shell of the MSLV was studied based on the ribbon-width-direction effective normal stress and shear stress sub-models. Besides, the stresses in the hemispherical head and reinforcing ring were obtained by combining finite element analysis with experiments in the meantime. Finally, safety of the vessel was evaluated mainly by hydrogen compatibility tests of the weld joints of austenitic stainless steel S31603 under 98MPa gaseous hydrogen according to ANSI/CSA CHMC 1-2014, as well as MSLV’s feature of burst resistant and easy for online safety monitoring. Research shows that hydrogen embrittlement of MSLV was mitigated, because the stress in the inner shell of MSLV is low, and austenitic stainless steel and its weld are well compatible with high pressure hydrogen.

This content is only available via PDF.
You do not currently have access to this content.