Experiments have been conducted to investigate the fracture and fragmentation characteristics of a liquid phased sintered (LPS) tungsten and high strength steel alloys. Metal cylinders, each of which was 20.32 cm tall and 5.08 cm inner/5.88 cm outer diameter, were explosively driven to failure. Two complimentary types of experiments were conducted in this series to determine input parameters for a related continuum mechanics based modeling effort. Open air experiments utilized ultra-high speed framing photography and a photonic Doppler velocimetry system (PDV). The information from these experiments provided a case wall velocity, relative time of breakup and strain-rate during the stress loading timeframe. Complimentary experiments were conducted in a water tank to perform a soft recovery of the fragments. The fragments were subsequently cleaned, massed, and characterized according to their mass and failure strain distributions. Various methods of analyzing the data (Mott & Weibull distributions) are discussed along with the calibration of the continuum damage model parameters. Results of the failure strain analysis, fragment distribution, and damage model are then supplied for use in subsequent modeling and application designs. Further details of the modeling and simulation approach are outlined in a complimentary set of two papers presented by Lambert [1] and Hopson [2].

This content is only available via PDF.
You do not currently have access to this content.