This paper provides two types of engineering J estimation equations for welded piping branch junctions with poor penetration crack under internal pressure. The first type is the so-called GE/EPRI type J estimation equation based on Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practical ranges of the inner radius of brace to the inner radius of chord ratio, the thickness of brace to the thickness of chord, the thickness of chord to the inner radius of chord ratio, the crack depth to the thickness of chord ratio, the strain hardening index for the R-O material, and the location along the poor penetration crack front. Based on tabulated plastic influence functions, the GE/EPRI-type J estimation equation along the crack front is proposed. For more general application, the effective remote stress method based on GE/EPRI-type solutions is provided. This method provides a simpler equation for J, which could be used for any stress-strain relationship material, including Ramborg-Osgood (R-O) material and non-R-O materials under monotonic increasing loading. The proposed effective remote stress based J estimation equation is compared with elastic-plastic 3-D FE results using actual stress–strain data for a Type 304 strainless steel. Good agreement between the FE results and the proposed reference stress based J estimation provides confidence in the use of the proposed method for elastic-plastic fracture mechanics of pressurized welded piping branch junction.

This content is only available via PDF.
You do not currently have access to this content.