Experiments were conducted to investigate the performance of two newly designed coaxial cylinders as a wave-energy extractor system in regular waves. The coaxial-cylinder design as a point-absorber consists of a tension-tethered vertical inner cylinder and a heaving outer or toroidal cylinder moving in the vertical direction. The relative heave motion between the two cylinders is used to convert the wave-induced response to electrical energy. The first-order heave response of the outer cylinder is used as the mathematical model in the frequency domain and the predicted results are compared with experimental measurements taken in a wave basin. The analytical solutions for the hydrodynamic added mass, damping, and wave-exciting force of the heaving floater are obtained from Chau and Yeung (2012, OMAE2012-# 83987). Experimentally determined hydrodynamic coefficients from free-decay tests at the resonance frequency are obtained to account for the effects of viscosity. Experimental results first reported include the wave-exciting force on the outer cylinder and its free response induced by the incident waves. The permanent magnet linear generator (PMLG) developed in Tom and Yeung (2012, OMAE2012-# 83736) is next installed as a passive power take-off (PTO) system. The electrical power output from the linear generator is measured with the resistance load as a parameter. The measured performances of the coaxial cylinders with and without the PTO are compared with the theoretical predictions. Excellent agreement is found, confirming the effectiveness of guiding theoretical model and of the engineering design.
Skip Nav Destination
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
June 8–13, 2014
San Francisco, California, USA
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4549-3
PROCEEDINGS PAPER
Performance Predictions and Validation of a Two Coaxial-Cylinder System as a Wave-Energy Extractor
Daewoong Son,
Daewoong Son
University of California at Berkeley, Berkeley, CA
Search for other works by this author on:
Ronald W. Yeung
Ronald W. Yeung
University of California at Berkeley, Berkeley, CA
Search for other works by this author on:
Daewoong Son
University of California at Berkeley, Berkeley, CA
Ronald W. Yeung
University of California at Berkeley, Berkeley, CA
Paper No:
OMAE2014-24582, V007T12A027; 10 pages
Published Online:
October 1, 2014
Citation
Son, D, & Yeung, RW. "Performance Predictions and Validation of a Two Coaxial-Cylinder System as a Wave-Energy Extractor." Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 7: Ocean Space Utilization; Professor Emeritus J. Randolph Paulling Honoring Symposium on Ocean Technology. San Francisco, California, USA. June 8–13, 2014. V007T12A027. ASME. https://doi.org/10.1115/OMAE2014-24582
Download citation file:
33
Views
0
Citations
Related Proceedings Papers
Related Articles
Experimental Force Characterization and Numerical Modeling of a Taut-Moored Dual-Body Wave Energy Conversion System
J. Offshore Mech. Arct. Eng (February,2010)
Evaluating Constant DC-Link Operation of Wave Energy Converter
J. Dyn. Sys., Meas., Control (January,2014)
An Electromagnetic Energy Harvester of Large-Scale Bistable Motion by Application of Stochastic Resonance
J. Vib. Acoust (February,2022)
Related Chapters
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Engineering Design about Electro-Hydraulic Intelligent Control System of Multi Axle Vehicle Suspension
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)