Subsea jumpers are susceptible to in-line and/or cross-flow vortex induced vibration (VIV) fatigue damage due to sea bottom currents. However, there is no proven industry standard design analysis methodology currently available specifically for assessing subsea jumper VIV response.

In 2012, ExxonMobil conducted a jumper VIV model test to assess the validity of potential jumper VIV prediction approaches. A towing test rig was used to expose a small scale jumper model to flow conditions simulating uniform bottom currents. The jumper model was instrumented to acquire acceleration, bending strain and end connection load data. Several accelerometers and strain gauges were installed to enable reconstruction of static and dynamic deformations and bending deflections along the jumper model. Towing tests at different orientations and tow speeds were performed on both a bare pipe model and a straked pipe model. The data were analyzed to examine the frequencies and amplitudes of the jumper vibration. The data from these experiments provide a benchmark for validating jumper VIV prediction approaches.

In this paper, the model test program is presented including model testing philosophy, jumper design and fabrication, and high level model test results.

This content is only available via PDF.
You do not currently have access to this content.