A methodology to predict the brittle-to-ductile transition temperature for sharp or blunt surface-breaking defects in base metals was developed and presented at IPC 2006. The method involved applying a series of transition temperature shifts due to loading rate, thickness, and constraint differences between bending versus tension loading, as well as a function of surface-crack depth. The result was a master curve of transition temperatures that could predict dynamic or static transition temperatures of through-wall cracks or surface cracks in pipes. The surface-crack brittle-to-ductile transition temperature could be predicted from either Charpy or CTOD bend-bar specimen transition temperature information. The surface crack in the pipe has much lower crack-tip constraint, and therefore a much lower brittle-to-ductile transition temperature than either the Charpy or CTOD bend-bar specimen transition temperature. This paper extends the prior work by presenting past and recent data on cracks in line-pipe girth welds. The data developed for one X100 weld metal shows that the same base-metal master curve for transition temperatures works well for line-pipe girth welds. The experimental results show that the transition temperature shift for the surface-crack constraint condition in the weld was about 30C lower than the transition temperature from standard CTOD bend-bar tests, and that transition temperature difference was predicted well. Hence surface cracks in girth welds may exhibit higher fracture resistance in full-scale behavior than might be predicted from CTOD bend-bar specimen testing. These limited tests show that with additional validation efforts the FITT Master Curve is appropriate for implementation to codes and standards for girth-weld defect stress-based criteria. For strain-based criteria or leak-before-break behavior, the pipeline would have to operate at some additional temperature above the FITT of the surface crack to ensure sufficient ductile fracture behavior.

This content is only available via PDF.
You do not currently have access to this content.