The sustainability of an energy-independent system with a relatively large heating load and that is driven by multiple renewable energy sources such as a photovoltaic battery and a biofuel generator has been investigated. The utilization of renewable energy has become one of the most important areas of interest for residential houses, as seen in zero energy house trends. In particular, technologies for energy-independent residential houses that can be categorized as off-grid systems have gained importance. In this paper, the design concept and the detail of the constructed pilot scale test system comprising a photovoltaic power (PV) generator and a biofuel power generator (BFG) are explained. Experimental results prove that continuous system operation is possible based on an effective control of these multiple renewable energy sources, even for relatively large heating loads. The results also imply that usage of multiple-source renewable energy is effective for the sustainable operation of an energy-independent residential house. Moreover, optimizing the energy consumption of the energy-independent system with heating is discussed. Here, mixed integer linear programming has been applied to the system driven by multiple renewable energy sources to optimize the sustainable operation of the system. The simulation results show that it is possible to reduce the cost incurred on biofuel by about 40% as compared with that of the system driven only by biofuel energy. Consequently, multiple sources of renewable energy are effective for the sustainable operation of an energy-independent residential house even with relatively large heating loads.

This content is only available via PDF.
You do not currently have access to this content.