In this work, a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system which can store energy via input of electricity or heat and deliver dispatchable electricity is presented [1]. The proposed system is low-cost and hybridizes compressed air and pumped-storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. A detailed control-volume energy analysis of the system is carried out, yielding a set of coupled differential equations which are discretized using a finite difference scheme and used to model the transient response during charging and discharging. The energy analysis includes coupled heat transfer and pressure drop analysis used to predict system losses for more accurate round trip efficiency (RTE) calculations and specific energy density (ED) predictions. Preliminary analysis of the current prototype indicates an electric-to-electric RTEE of 66% (corresponding to shaft-to-shaft mechanical RTEM of 78%) and ED of 2.5 MJ/m3 of air, given initial air volume and pressure of 2 m3 and 70 bar. The electric power output ranges from a max of 2.5 kW to a min of 1.2 kW and the output current ranges from a max of approximately 21 amps to approximately 10 amps at 120 V, 60 Hz dispatchable electricity, over a period of approximately 50 minutes. Additionally, it is shown that heat transfer enhancement to the point of a 5-fold increase in air heat transfer rates results in a near 5% improvement in RTEE (70% considering all component losses). Additional component efficiency improvements and efficiency gains due to system scale-up could see higher achievable RTEs.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5744-1
PROCEEDINGS PAPER
Transient Thermofluids Analysis of a Ground-Level Integrated Diverse Energy Storage (GLIDES) System
Adewale Odukomaiya,
Adewale Odukomaiya
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Ayyoub M. Momen,
Ayyoub M. Momen
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Ahmad Abu-Heiba,
Ahmad Abu-Heiba
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Kyle Gluesenkamp,
Kyle Gluesenkamp
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Omar Abdelaziz,
Omar Abdelaziz
Oak Ridge National Laboratory, Oak Ridge, TN
Search for other works by this author on:
Samuel Graham
Samuel Graham
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Adewale Odukomaiya
Georgia Institute of Technology, Atlanta, GA
Ayyoub M. Momen
Oak Ridge National Laboratory, Oak Ridge, TN
Ahmad Abu-Heiba
Oak Ridge National Laboratory, Oak Ridge, TN
Kyle Gluesenkamp
Oak Ridge National Laboratory, Oak Ridge, TN
Omar Abdelaziz
Oak Ridge National Laboratory, Oak Ridge, TN
Samuel Graham
Georgia Institute of Technology, Atlanta, GA
Paper No:
IMECE2015-50478, V06BT07A038; 9 pages
Published Online:
March 7, 2016
Citation
Odukomaiya, A, Momen, AM, Abu-Heiba, A, Gluesenkamp, K, Abdelaziz, O, & Graham, S. "Transient Thermofluids Analysis of a Ground-Level Integrated Diverse Energy Storage (GLIDES) System." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 6B: Energy. Houston, Texas, USA. November 13–19, 2015. V06BT07A038. ASME. https://doi.org/10.1115/IMECE2015-50478
Download citation file:
43
Views
0
Citations
Related Proceedings Papers
Related Articles
Theoretical Performance Limits of an Isobaric Hybrid Compressed Air Energy Storage System
J. Energy Resour. Technol (October,2018)
Comparative Study of Various Constant-Pressure Compressed Air Energy Storage Systems Based on Energy and Exergy Analysis
J. Energy Resour. Technol (May,2021)
Thermo-fluid Physiognomies of a Photovoltaic Thermal Collector: A Comparative Study with Different Flow Channel Materials
J. Sol. Energy Eng (January,0001)
Related Chapters
Risk Mitigation for Renewable and Deispersed Generation by the Harmonized Grouping (PSAM-0310)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Introduction
Handbook of Integrated and Sustainable Buildings Equipment and Systems, Volume I: Energy Systems
Thermoelectric Coolers
Thermal Management of Microelectronic Equipment