The shapes of a pore in solid resulted from entrapment of a tiny bubble by a solidification front are predicted in this work. Pore formation and its shape in solid are one of the most critical factors affecting properties and microstructure, in materials. For simplicity without loss of generality, the tiny bubble is considered to have a spherical cap. From a geometrical analysis, the contact angle of the bubble cap on the solidification front or the pore shape in solid is found to be governed by the Abel equation of the first kind. The pore becomes closed by imposing a finite bubble growth rate-to-solidification rate ratio which can produce a minimal bubble radius at the contact angle of 90 degrees. Closure of a pore resulted from a greater solidification rate than bubble growth rate, as accepted in the literature, is incorrect.

This content is only available via PDF.
You do not currently have access to this content.