When imbedded in dissimilar materials subject to large temperature gradients, thermocouples are known to yield erroneous (bias) temperature measurements. It has been established that the bias error may be accounted for with an appropriate computational model and the measured temperatures may be corrected with an appropriate kernel function. In this work, a thermocouple with a welded bead is considered. Early two-dimensional models considered the thermocouple to be a single wire with effective thermal properties. The model in the current investigation is three-dimensional and represents the sensor as two wires, each with unique thermal properties. The welded bead is represented as a separate entity with properties distinct from those of the wires. The problem of determining what location in the three-dimensional model corresponds to the measured temperature is considered. Earlier models have considered the sensed temperature to be the temperature at the tip of the two-dimensional thermocouple or, in three-dimensional models, the temperature at the center of the volume of the welded bead. In the current work, a theory is set forth for identifying the location at which the temperature is sensed by a thermocouple. This theory is in line with traditional thermoelectric theory and is supported with experimental evaluation with thermal imaging as well as examination of thermocouples by scanning electron microscopy and energy dispersive X-ray analysis. The significance of accurate modeling of the sensed temperatures is demonstrated with a numerical experiment.
Skip Nav Destination
ASME 2008 International Mechanical Engineering Congress and Exposition
October 31–November 6, 2008
Boston, Massachusetts, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4871-5
PROCEEDINGS PAPER
Obtaining the Sensed Temperatures From a Detailed Model of a Welded Thermocouple
Jonathan W. Woolley,
Jonathan W. Woolley
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Michael A. Bestor,
Michael A. Bestor
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Mark L. Weaver,
Mark L. Weaver
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Keith A. Woodbury
Keith A. Woodbury
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Jonathan W. Woolley
University of Alabama, Tuscaloosa, AL
Michael A. Bestor
University of Alabama, Tuscaloosa, AL
Mark L. Weaver
University of Alabama, Tuscaloosa, AL
Keith A. Woodbury
University of Alabama, Tuscaloosa, AL
Paper No:
IMECE2008-68031, pp. 649-655; 7 pages
Published Online:
August 26, 2009
Citation
Woolley, JW, Bestor, MA, Weaver, ML, & Woodbury, KA. "Obtaining the Sensed Temperatures From a Detailed Model of a Welded Thermocouple." Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C. Boston, Massachusetts, USA. October 31–November 6, 2008. pp. 649-655. ASME. https://doi.org/10.1115/IMECE2008-68031
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Distortion in Thermal Field Around Inserted Thermocouples in Experimental Interfacial Studies, Part 4: End Effect
J. Manuf. Sci. Eng (February,2002)
A Dual-Scale Computational Method for Correcting Surface Temperature
Measurement Errors
J. Heat Transfer (August,2004)
Identification of Time-Varying Time Constants of Thermocouple Sensors and Its Application to Temperature Measurement
J. Dyn. Sys., Meas., Control (January,2009)
Related Chapters
Case Study 10: Data Reconciliation
Engineering Optimization: Applications, Methods, and Analysis
Validation of Elekta iViewGT A-Si EPID Model for Pre-Treatment Dose Verification of IMRT Fields
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Constructing Dynamic Event Trees from Markov Models (PSAM-0369)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)