Ferroelectric ceramics can be tailored at the microscale to have an ordered arrangement of crystal axes. Such grain-oriented ceramics can exhibit material properties far superior to conventional ceramics with random microstructure. A microstructurally based numerical model has been developed that describes the 3D non-linear behavior of ferroelectric ceramics. The model resolves the polycrystalline structure directly in the topology of the problem domain. The developed model is used to predict the effect of microstructural modifications on material behavior. In particular, we examine the internal residual stress after poling for idealized configurations of random and grain-oriented microstructures. The results indicate that a grain-ordered microstructure produces a significant increase in remanent polarization without detriment to internal residual stress.

This content is only available via PDF.
You do not currently have access to this content.