Synthetic jet actuators (SJA) are one of the newly developed actuators that have demonstrated its great potentials in active flow applications, particularly in closed-loop flow controls. The SJA contains a piezoelectric membrane in a cavity, which vibrates and generates a periodic jet at the exit of the cavity through an orifice that is mounted flush with the solid wall of the flow field. In order to design the feedback control laws, it is crucial to be able to quantitatively capture the dynamics of SJA. In this paper, the dynamics of SJAs with six different orifice sizes are experimentally investigated. A synthesis using system identification for the purpose of constructing mathematical models of these zero mass-flux actuators is offered. The experimental study includes two output parameters, the acoustic sound pressure generated by the SJA and the mechanical membrane vibration of the SJA. State-space models for these outputs (sound pressure and mechanical vibration) are developed as a function of orifice size. These results form a foundation for future intelligent design of SJA.
Skip Nav Destination
ASME 2005 International Mechanical Engineering Congress and Exposition
November 5–11, 2005
Orlando, Florida, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
0-7918-4216-9
PROCEEDINGS PAPER
Experimental Study of the Dynamics of Synthetic Jet Actuators With Different Orifice Sizes
Brian G. Williams
Brian G. Williams
Idaho State University
Search for other works by this author on:
Rahul Sekhri
Idaho State University
Marco P. Schoen
Idaho State University
Feng Lin
Indiana Institute of Technology
Brian G. Williams
Idaho State University
Paper No:
IMECE2005-79777, pp. 927-935; 9 pages
Published Online:
February 5, 2008
Citation
Sekhri, R, Schoen, MP, Lin, F, & Williams, BG. "Experimental Study of the Dynamics of Synthetic Jet Actuators With Different Orifice Sizes." Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Orlando, Florida, USA. November 5–11, 2005. pp. 927-935. ASME. https://doi.org/10.1115/IMECE2005-79777
Download citation file:
10
Views
Related Articles
Optimality of Hyperbolic Partial Differential Equations With Dynamically Constrained Periodic Boundary Control—A Flow Control Application
J. Dyn. Sys., Meas., Control (December,2006)
Feedback Control of Self-Sustained Nonlinear Combustion Oscillations
J. Eng. Gas Turbines Power (June,2016)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition