A method for optimally synthesizing multi-component structural assemblies of an aluminum space frame (ASF) vehicle body is presented, which simultaneously considers structural stiffness, manufacturing and assembly cost and dimensional integrity under a unified framework based on joint libraries. The optimization problem is posed as a simultaneous determination of the location and feasible types of joints in a structure selected from the predefined joint libraries, combined with the size optimization for the cross sections of the joined structural frames. The structural stiffness is evaluated by finite element analyses of a beam-spring model modeling the joints and joined frames. Manufacturing and assembly costs are estimated based on the geometries of the components and joints. Dimensional integrity is evaluated as the adjustability of the assembly for the given critical dimensions. The optimization problem is solved by a multi-objective genetic algorithm. An example on an ASF of the mid-size passenger vehicle is presented, where the representative designs in the Pareto set are examined with respect to the three design objectives.

This content is only available via PDF.
You do not currently have access to this content.